
www.manaraa.com

DEEPEDGE: DEEP-LEARNING BASED IMAGE
RECOGNITION SYSTEM ON EDGE COMPUTING

INFRASTRUCTURES

BY

CHANG LIU
B.E. HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (2011)

M.S. UNIVERSITY OF MASSACHUSETTS LOWELL (2018)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE
UNIVERSITY OF MASSACHUSETTS LOWELL

AUGUST, 2019

Dissertation Supervisor
Yu Cao
Ph.D. Professor
Department of Computer Science
University of Massachusetts Lowell

Thesis Committee Members
Benyuan Liu
Ph.D. Professor
Department of Computer Science
University of Massachusetts Lowell

Yan Luo
Ph.D. Professor
Department of Electrical and Computer Engineering
University of Massachusetts Lowell

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

22619953

22619953

2019

www.manaraa.com

© 2019 by Chang Liu

All rights reserved

i

www.manaraa.com

www.manaraa.com

DEEPEDGE: DEEP-LEARNING BASED IMAGE
RECOGNITION SYSTEM ON EDGE COMPUTING

INFRASTRUCTURES

BY

CHANG LIU

ABSTRACT OF A DISSERTATION SUBMITTED TO THE FACULTY OF THE
DEPARTMENT OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE
UNIVERSITY OF MASSACHUSETTS LOWELL

AUGUST, 2019

Dissertation Supervisor
Yu Cao
Ph.D. Professor
Department of Computer Science
University of Massachusetts Lowell

Dissertation Member
Benyuan Liu
Ph.D. Professor
Department of Computer Science
University of Massachusetts Lowell

Yan Luo
Ph.D. Professor
Department of Electrical and Computer Engineering
University of Massachusetts Lowell

www.manaraa.com

ABSTRACT

Deep learning, aimed to learn multiple levels of representation and abstrac-

tion that help infer knowledge from data such as images, video, audio and text, is

making astonishing improvements in computer vision, speech recognition, multimedia

analysis, and medical imaging. While promising, current progress in deep learning

algorithm and system fail to meet the hardware requirement and time constraint.

Most of the complex deep learning models can only be deployed in powerful super-

computers and cloud servers equipped with GPU and CPU, making it inaccessible to

various mobile devices. However, in real world, the need for deploying high-accurate,

fast-response deep learning models in mobile devices is increasing. How to build a

high-efficient system with limited computation resource while maintaining the high

accuracy and low latency is a becoming a more and more challenging task in system

research and engineering field.

This thesis proposes a deep learning based system (DeepEdge) running on edge

computing infrastructures to solve such problems. We begin our research by training

convolutional neural network (CNN) for fine-grained categories on various dataset

including general images (food, vegetable) and medical images (chest X-ray images).

Then we explore the deployment on edge devices, especially for mobile devices run-

ning Android. We implement various CNN models with detailed evaluation for their

response time and memory consumption. Additionally, we study two deployment

mechanisms using C/S paradigm and stand-alone client paradigm. Our system have

shown outstanding performance in these two paradigms, especially in the following

two aspects: (1) the deep learning-based visual image recognition algorithm achieves

the best-in-class recognition accuracy; (2) the proposed image recognition system em-

ploying edge computing paradigm overcomes some inherent problems of traditional

iii

www.manaraa.com

mobile cloud computing paradigm, such as unacceptable system latency and low bat-

tery life of mobile devices. We have conducted extensive experiments with real-world

data. Our results have shown that the proposed system achieves three objectives:

(1) outperforming existing work in terms of image recognition accuracy; (2) reducing

response time that is equivalent to the minimum of the existing approaches; and (3)

lowering energy consumption which is close to the minimum of the state-of-the-art.

We also investigate the application in different scenarios, especially in the

healthcare domain. We first study the application in dietary assessment and devel-

oped novel algorithm and application that can help monitor people’s food intake and

calorie information. Second, we expand our research focus and apply our system in

mobile-based tuberculosis (TB) diagnosis and deploy our mobile application and sys-

tem in Perú for field study in real world settings. At last, we collaborate with retail

industry and develop system in self-service supermarkets for automatic vegetable and

fruit recognition. Our system has proven stable performance in such applications and

shown broad potential in healthcare and retail industries.

iv

www.manaraa.com

ACKNOWLEDGEMENTS

Pursuing a Ph.D degree is never an easy journey. It’s like a marathon that

requires a lot of attention, patience and persistence. I could never have reached the

heights without the help, support and guidance of a lot of people.

First of all, I would like to thank my supervisor, Dr. Yu Cao, for his devotion

to my research throughout the past five years. Dr. Cao has long been a strong

supporter and coach in my Ph.D study. He has supported me not only by providing a

research assistantship over the past five years, but also academically and emotionally

through the rough road to finish this thesis. He helped me come up the thesis topic,

guided me over the experiments and gave me directions to solve the difficulties along

the journey. Without his help, this dissertation could never be finished.

I’m also very grateful to my Ph.D. committee members, Dr. Benyuan Liu and

Dr. Yan Luo for their time, academic support and valuable guidance in general. Dr.

Liu has been a talented researcher and is always providing insightful advice in my

research. I’d also like to thank him for his patient help in revising my papers and

guiding me through the projects. I’m also grateful for the support of Dr. Yan Luo.

He has been a very good collaborator and patient helper that always supports me,

especially on his mobile computing projects.

Over the past five years, I am fortunate to have the opportunity to work with a

group of energetic and talented schoolmates (Ning Zhang, Peng Hou, Qilei Chen, Ying

Li, Dechun Wang, Xizhe Wang, Chenxi Zhang, Pengfei Zhang, Xinzi Sun, Jing Ni,

Lijian Wan, Wenjing Yang, Baochen Sun etc) in the department of computer science

in University of Massachusetts Lowell. I enjoyed every moment that we have worked

together, especially the debugging night in the labs. I would also thank Marlon

Alcantara and Terry Griffin for their support in my medical research projects. I

v

www.manaraa.com

appreciate the friendship and all their encouragement to finish this dissertation.

I would also show my deep thanks to the computer science secretary Karen Vo-

lis, system manager Tuyen Nguyen and other professors for their assistance through-

out the five years. Your assistance makes the life easier.

I also want to express my heartfelt thanks to friends in the Chinese Christian

student fellowship, Raymond & Gail, Alsa & Rick, Augustine & Sharon, Jinyi Chen,

Junwei Huang, Wei Ye, Jonny Wong, Peilong Li & Jingwen Wang, Yujia Zhou, Shan

Cao, Qing Yu, Zheng Li, Bin Tan, Ting Wang and Elizabeth Jin. I’m also thankful for

Dr. Chunxiao (Tricia) Chigan, Ibukun Dada, Jimmy Oladimeji from Fusion Church

for helping me in seeking God. I also want to thank the Pastors Benjamine Tu and

Gideon, the brothers and sisters from Chinese Bible Church of Great Lowell (CBCGL)

for their endless love and support. Thank God for his provision and faithfulness.

Last but not least, I must thank my mother Xingzhen Wang, my brother Bin

Liu for their unconditional support and love. I’d like to thank my father for his deep

love and support during his life. I know he must be very happy for me in the heaven.

vi

www.manaraa.com

Dedicated to my parents

vii

www.manaraa.com

Contents

ABSTRACT iii

ACKNOWLEDGEMENTS v

CONTENTS vii

List of Figures xii

List of Tables xv

List of Algorithms xvii

1 INTRODUCTION 1

1.1 Problem Statement . 1

1.2 Proposed Approach . 2

1.3 Organization . 4

2 BACKGROUND ON IMAGE RECOGNITION SYSTEM 6

2.1 Feature-based Image Recognition . 9

2.2 Deep learning-based Approach for Recognition 10

2.3 Mobile-based Computing System . 10

3 CURRENT STATE-OF-ART OF RELATED RESEARCH 13

3.1 Image Recognition and Object Detection 13

viii

www.manaraa.com

3.2 Edge-based Image Recognition System 14

3.3 Deep Learning in Medical Imaging 16

4 FOOD RECOGNITION AND DIETARY ASSESSMENT 18

4.1 Introduction . 19

4.2 Related Work . 22

4.3 System Design . 27

4.3.1 Overview . 27

4.3.2 Food Image Analysis Algorithms 29

4.3.3 CNN-based Food Image Analysis Algorithms 34

4.4 System Implementation . 36

4.4.1 Implementation of Front-end Component (FC) 37

4.4.2 Implementation of Communication Component (CC) 38

4.4.3 Implementation of Back-end Component (BC) 39

4.5 Performance Evaluation . 40

4.5.1 Experiment Setup and Evaluation 40

4.5.2 Experimental Results on UEC-256/UEC-100 41

4.5.3 Experimental Results on Food-101 44

4.5.4 The Employment of Bounding Box 46

4.6 Discussion . 47

4.7 Conclusion . 48

5 TUBERCULOSIS(TB) DIAGNOSIS 49

5.1 Introduction . 49

5.2 Background and Related work . 51

5.2.1 Mobile Computing in Healthcare (mHealth) 52

5.2.2 Developing Chest X-ray Image Database 53

5.2.3 Computer-aided System for TB Diagnosis 54

ix

www.manaraa.com

5.3 Proposed Approach . 55

5.3.1 Developing Chest X-ray Image Dataset 56

5.3.2 Collecting Chest X-ray Image Annotation 57

5.3.3 Convolutional Neural Network 62

5.3.4 Transfer Learning . 65

5.3.5 Detecting TB manifestation 66

5.4 Experiments . 68

5.4.1 Dataset Details . 68

5.4.2 Architecture Details . 68

5.4.3 Shuffle Sampling . 69

5.4.4 Results . 70

5.5 Conclusions and Future work . 72

6 VEGETABLE IMAGE RECOGNITION 74

6.1 Introduction . 75

6.2 Background and Related work . 78

6.2.1 Model-based Application . 78

6.2.2 Device-based Mobile System 79

6.2.3 Edge-based Computing Paradigms 79

6.3 Proposed Approach . 81

6.3.1 Convolutional Neural Network 81

6.3.2 Transfer Learning . 84

6.3.3 Model Quantization . 85

6.4 Experiments . 86

6.4.1 Dataset Details . 87

6.4.2 Hyperparameter Tuning . 88

6.4.3 Implementation . 89

6.4.4 Model Evaluation . 89

x

www.manaraa.com

6.4.5 System Evaluation . 91

6.4.6 Application Study . 92

6.5 Conclusion . 94

7 CONCLUSION 95

REFERENCES 98

BIOGRAPHICAL SKETCH xvii

xi

www.manaraa.com

List of Figures

1.1 Challenges for developing image recognition system on mobile devices. 2

2.1 General image recognition tasks. 7

2.2 Processing pipeline for an image recognition task. 7

2.3 Two categories of image features. 8

2.4 Machine learning algorithms. 11

3.1 Various TB manifestations with minor differences in the same category. 17

4.1 Overview architecture of “Deep Food on the Edge” system. 27

4.2 System design and components. 28

4.3 Blurry vs. clear image classification using majority vote and image

features. 32

4.4 Illustration of the “Inception Module”. 35

4.5 Illustration of module connection. 37

4.6 Screenshots showing image segmentation implementation in FC module. 38

4.7 Screenshot showing segmented images being uploaded to the server in

CM module. 39

5.1 Overview of proposed mobile based system for improving TB diagnosis. 55

xii

www.manaraa.com

5.2 (a) Air space consolidation which showing glass opacity with consol-

idation in the right middle lobe; (b) Miliary pattern with seed-like

appearance; (c) Cavity located at the lower lobe (annotated by ar-

rows); (d) Pleural effusion, which is excess fluid that accumulates in

the pleural cavity; (e) Calcified granulomata: The red arrow indicates

a large 5 cm diameter squamous cell carcinoma of the right lower lobe

and there is 1.5 cm bright opacity in the middle of the mass (which

is a calcified granuloma). Additional calcified granulomatous areas are

medial to the mass, as indicated by blue arrow. 57

5.3 Annotation software interface. 58

5.4 Pop up to inform the manifestation and details. 59

5.5 Right Panel, buttons and golden information. 60

5.6 Images annotated by a pulmonologist (top) to be choose, one specific

image open as a sample (bottom). 61

5.7 Cycle for annotation process that repeats for each TB manifestation. 62

5.8 CNN architecture(LeNet[1]) for TB classification. 65

5.9 Proposed approach for X-ray image analytics. 66

5.10 Shuffle sampling for imbalanced data. 70

5.11 Non-shuffle vs. shuffle classification accuracy. 71

5.12 Classification accuracy with cross validation. Use AlexNet for binary

classification and GoogLeNet for full classification 71

5.13 Confusion matrix on test set . 72

6.1 System demo for classifying vegetable and fruit using mobile device. . 77

6.2 Proposed method using MobileNet. 83

6.3 Transfer learning - training on small domain-specific dataset from pre-

trained model. 85

6.4 Model quantization. 86

xiii

www.manaraa.com

6.5 Fru92 dataset images. 87

6.6 Veg200 dataset images. 87

xiv

www.manaraa.com

List of Tables

4.1 Comparison of accuracy on UEC-256 at different iterations. 42

4.2 Comparison of accuracy between our proposed approach and existing

approaches using the same data set (UEC-100). 42

4.3 Comparison of accuracy between our proposed approach and existing

approaches using the same data set (UEC-100). 43

4.4 Comparison of accuracy on Food-101 at different iterations. 45

4.5 Comparison of accuracy using different method on Food-101. 45

4.6 Comparison of accuracy of proposed approach using bounding box on

UEC-256. 46

4.7 Comparison of accuracy of proposed approach using bounding box on

UEC-100. 46

5.1 Data distribution in TB dataset. 68

5.2 Evaluation on training and testing set 72

6.1 Data distribution in VegFru dataset. 88

6.2 Baselines on VegFru for CNN models. The typical CaffeNet, VG-

GNet, GoogLeNet are chosen as baselines while MobileNet are com-

pared with the previous state-of-art results. 90

xv

www.manaraa.com

6.3 Baseline on Vegfru for other classifiers. The typical SVM, Ran-

dom Forest (RF) are chosen as baselines while MobileNet are compared

with the previous state-of-art results. 91

6.4 Model size on Vegfru. The trained model is converted to frozen

graph and quantized to TF-Lite format. 92

6.5 System evaluation on MobileNet and baseline model for time, storage,

memory consumption and CPU utilization on mobile devices. 92

6.6 Evaluation on customized grocery dataset using proposed approach. . 94

xvi

www.manaraa.com

List of Algorithms

1 Image Preprocessing in the Front-end Component (FC) 31

2 Watershed Algorithm using topographical distance 33

xvii

www.manaraa.com

1

Chapter 1

INTRODUCTION

1.1 Problem Statement

In the last few years, we have witnessed an explosive increase of mobile and

wearable computing devices (e.g., the smart watch and smart phone) in the consuming

electronics market. One common characteristic of these devices is that many of them

have inexpensive, unobtrusive and multi-modal sensors. These sensors enable us to

collect multimedia data (e.g., video, audio and image) in natural living environments.

Due to the ubiquitous nature of mobile and wearable devices, it is now possible to use

these devices to develop pervasive, automated applications for computer vision tasks

like image classification and object detection. One example of such application is to

use mobile devices as a pervasive journal collection tool and to employ cloud service

as a data analysis platform. The combination of mobile device and cloud service

could contribute to improving the accuracy of image recognition.

While promising, one of the major barriers of adopting automatic recognition

system into practice is how to design and develop effective and efficient algorithms and

system to derive the information (e.g., image type, class label and region information)

from input images. As shown in Figure 1.1, there are three factors (e.g, accuracy,

www.manaraa.com

2

battery and latency) that limit the development of image recognition system. Con-

sidering the limited computation resources and low battery life on mobile device,

it is more challenging to develop such a system within the mobile cloud computing

paradigm. We have carefully investigated this problem and have identified two major

challenges. The first major challenge is how to design effective and efficient analytic

algorithms to achieve optimal recognition accuracy. The second major challenge is

how to develop a system that can minimize energy consumption and response time.

Figure 1.1: Challenges for developing image recognition system on mobile devices.

1.2 Proposed Approach

To address the first issue (recognition accuracy), we plan to develop new deep

learning-based algorithms. Deep learning (also known as representation learning,

feature learning, deep structured learning, or hierarchical learning) is a new area

of machine learning research. It allows computational models that are composed

of multiple processing layers to learn representations of data with multiple levels

of abstraction. In the last five years, these techniques have improved the state-

www.manaraa.com

3

of-the-art in speech recognition, computer vision, natural language processing, and

many other domains. Our extensive experiments in this thesis have shown that,

compared with traditional hand engineered features (e.g., SIFT) and shallow learning-

based classification algorithms (e.g., Support Vector Machine (SVM)), our proposed

deep learning-based classification algorithms could improve the recognition accuracy

substantially. We also developed other image analysis algorithms to enhance the

image quality for data analysis. All these algorithms have been integrated into an

edge computing based real-time computing system.

To address the second issue (energy consumption and response time), we aim

to design and employ a real-time recognition system employing edge computing ser-

vice paradigm. The proposed system distributes the data analytics throughout the

network by splitting the recognition task between the edge devices (close to end users)

and the servers (in the cloud). Edge computing refers to the enabling technologies

that allow computation to be performed at the edge of the network in a stream fash-

ion. Edge computing is a non-trivial extension of cloud computing from the core

network to the edge network. The proposed edge computing service infrastructure is

particularly useful for our application because most of the mobile devices have lim-

ited computation capacity and battery life. Hence, it is difficult for them to support

computational-intensive tasks. At the same time, our proposed image analysis algo-

rithms usually involve heavy computation and may require much more computation

resources.

In this thesis, we focus on two major research efforts. The first research ef-

fort aims to develop new recognition algorithms, including new image recognition

algorithms based on deep learning and image pre-processing and segmentation algo-

rithms to enhance the quality of image. The second research effort aims to design a

real-time recognition system. The proposed system employs edge computing service

paradigm and distributes the data analytics throughout the network. Specifically, the

www.manaraa.com

4

proposed system will split the recognition tasks between the edge devices (which is

physically close to the user) and the server (which is usually located in the remote

cloud). For example, in our system, the edge devices (e.g., users smart phone) can

perform light-weight computation on image for recognition. Then, our system will

transmit the images (after the light-weight computation at edge device) to the server

in the cloud to perform more accurate recognition tasks. By distributing the analyt-

ics throughout the network, our system can achieve significant improvement in the

recognition accuracy, while minimizing the response time and energy consumption. In

this thesis, we implemented a prototype system to verify our hypothesis and evaluate

the proposed algorithms. Our prototype runs on both edge device and server. We

also conducted extensive experiments with real-world data. The results show that

our system achieves very impressive results on the following three aspects. First, to

the best of our knowledge, the recognition accuracy using our proposed approach

outperformed all other reported results. Second, the response time of the proposed

system is equivalent to the minimum of the existing approaches. Last but not the

least, the energy consumption of the proposed system is close to the minimum of the

state-of-the-art.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides back-

ground on image recognition, deep learning-based image recognition and mobile-based

computing system. Chapter 3 introduces the current state-of-art of relevant research.

In the next three chapters, we discuss our proposed approach in three different appli-

cation scenarios, including image recognition in general images and medical images

with algorithm design and implementation in edge-computing devices. Chapter 4

presents the food recognition and dietary assessment research. Methods for medical

www.manaraa.com

5

image analysis and tuberculosis diagnosis are discussed in Chapter 5. We introduce

the algorithm and system in general image recognition for vegetable and fruit image

recognition in real-world retail stores in Chapter 6. Finally, we offer our concluding

remarks and future work in Chapter 7.

www.manaraa.com

6

Chapter 2

BACKGROUND ON IMAGE

RECOGNITION SYSTEM

Image recognition refers to the technologies that can recognize certain people,

animals, objects or other targeted subjects through the use of algorithms and machine

learning techniques. It’s becoming a very popular topic in computer vision and has

broad application in surveillance, autonomous driving, healthcare, social media and

recommendation. There are several kinds of sub-tasks in such field, for example, image

classification, object detection and localization. As shown in Figure 2.1, these three

types of tasks have their own different approaches and targets. Image classification

usually refers to processing the whole image level information, the final goal is to

give a label to the whole image; Image localization has a different target, requiring

to find the objects in the precise location and predict its corresponding label; For

object detection, the bounding box is also predicted to get the precise boundary of

the objects in the picture, with the possibility that each image may have multiple

objects.

Figure 2.2 shows the pipeline for a traditional image recognition task. An

input image is first fed into an image recognizer. The image recognizer will process

www.manaraa.com

7

Figure 2.1: General image recognition tasks.

this image and generate the output for the image. For an image classification task,

the recognizer is an image classifier that classify the image and predict the label. For

an object detection task, the recognizer is an object detection that detects the precise

bounding box of the objects and predicts the corresponding the coordinates. In most

cases, the image recognizer is trained by using some image features from the training

image set.

Figure 2.2: Processing pipeline for an image recognition task.

As shown in Figure 2.3, there are typically two categories of features: 1)

hand-engineered features that encode the global or local information from the image.

For example, Shape Matrices, Invariant Moments [2], Histogram Oriented Gradients

(HOG [3]) and Co-HOG are some examples of global descriptors. SIFT [4], SURF [5],

LBP [6], BRISK [7], MSER [8] and FREAK [9] are some examples of local descriptors.

www.manaraa.com

8

Figure 2.3: Two categories of image features.

These feature descriptors encode the image using their fixed patterns regarding color,

texture, shape and others to represent the inherent unique spatial information. 2)

deep learning-based image features that are extracted from image automatically using

neural network model. For this kind of image features, since the model is learned from

a large-scale dataset, there are no fixed rules designed by human to represent image.

Those features have shown outstanding classification and detection performance in

major recognition leader board [10, 11, 12]. Most neural network models are consist

of different layers, including convolutional layer, pooling layer, ReLU layer and fully-

connected layers with different activation function and connection structure. Such

network design introduces significant improvement over simple model structure and

enhances the capability of feature representation over hand-engineered features.

In this following section, more discussions about the specific challenges and

research problems will be covered to give more descriptions about the background on

this image recognition problem.

www.manaraa.com

9

2.1 Feature-based Image Recognition

In image recognition community, the popular methods have long been dom-

inate by the feature-based algorithms. The method of finding image displacements

which is easiest to understand is the feature-based approach. This finds features (for

example, image edges, corners, and other structures well localized in two dimensions)

and compares the feature maps using mathematical distances and similarities. This

feature-based method (FBR) usually follows such routines: 1) first, it proceeds by

computing a number of properties of the input image and combining them into a

feature vector; 2) second, an object model is constructed by a set of feature vectors

associated with a set of representative images for that object; 3) at last, a new image

is classified by computing its feature vector and compares it with the model vector.

An image is classified as an instance of the object when the object model contains

the feature vector that is closest to the image feature vector.

Research activities in this category focus on developing different types of vi-

sual features and classification algorithms to score different types of object categories.

Most of the papers employ texture features (e.g., Local binary patterns (LBP) [13, 14],

Daubechies wavelets [15]) or geometry features (e.g., circularity, Hessian shape fea-

tures [16]). The classification algorithms employed in these papers range from simple

threshold-based approach or k-nearest neighbors (K-NN) algorithm to more compli-

cated methods, such as Decision tree and Support Vector Machine (SVM); The second

category of related work is focusing on image categorization on the region level [17].

The main stream methodology in this area is based on local patch representation of

the image content (e.g., visual bag of words (Visual BoW) approach). This type of

dense sampling of simple features are then fed to non-linear kernel-based classifier,

such as SVM classifier. The ultimate goal of this research effort is to discriminate

between object and its background.

www.manaraa.com

10

2.2 Deep learning-based Approach for Recognition

Deep learning, as shown in Figure 2.4 aims to learn multiple levels of represen-

tation and abstraction that help infer knowledge from data such as images, videos,

audio, and text, is making astonishing gains in computer vision, speech recognition,

multimedia analysis, and drug designing [18]. Briefly speaking, there are two main

classes of deep learning techniques: purely supervised learning algorithms (e.g., Deep

Convolutional Network), unsupervised and semi-supervised learning algorithms (e.g.,

Denoising Autoencoders [19], Restricted Boltzmann Machines, and Deep Boltzmann

Machines [20]). With the help of large-scale and well-annotated dataset like ImageNet,

it’s now feasible to perform large scale supervised learning using Convolutional Neu-

ral Network (CNN). The issue of convergence has been addressed by Hinton’s work

in 2006. Subsequent theoretical proof and experimental results both shows that large

scale pre-trained models in large domain, with specific small scale unlabeled data in

another domain, will give excellent result in image recognition and object detection.

To address the issue of limited abilities of feature representation, many researchers

have proposed more complex CNN network structure, like VGG [21], ZFNet [22],

GoogLeNet [12] and so on. On the other hand, ReLU [23] is also proposed to make

it converge faster and also gains a better accuracy. Most of current researchers have

put efforts in making the network deeper and avoid saturation problem.

2.3 Mobile-based Computing System

There has been a significant amount of research going on and plenty of them

focus on studying the system performance of deep learning system running on the

mobile devices. Previous work on system research focus on the overall evaluation met-

rics when conducting the recognition tasks, which include accuracy, inference time,

response time and power consumption [24]. The studied system can be divided into

www.manaraa.com

11

Figure 2.4: Machine learning algorithms.

two categories. The first category focus on studying the combination of cloud-based

server and mobile devices [25, 26]. Researchers developed the system using mobile

and cloud server together. Chen et al. [25] proposed to use mobile-edge and cloud

services for system integration and studied the influence of computation offloading

for multiple-users. Kang et al. [27] designed a lightweight scheduler to automati-

cally partition DNN computation between mobile devices and data centers at the

granularity of neural network layers to reduce latency and power consumption. The

second category focus on developing system without cloud intervention. Keiji and

Austin et al. developed a system [28, 29] for food recognition using CNN architecture

and running the inference on-device separately. Latifi et al. [30] designed a system

called CNNDroid for running CNN models on Android devices with GPU-accelerated

execution. The device-based mobile approaches studied the system performance in

real-world scenarios and provide complete evaluation and guideline for deployment.

Edge computing [31] usually refers to the enabling technology that allows

computation to be performed at the edge of the network. The “edge” devices can be

www.manaraa.com

12

any computing and network resources along the path between data sources and cloud

data center. The data source can be any sensing devices like smartphone, smartwatch,

PDA and tablet that collect sensor data like image, audio and video. Cloud data

center is equipped with powerful servers that can perform complex computation and

data processing. By utilizing the computation ability of edge devices, we can address

the critical issues of response time requirement, battery life constraint, bandwidth

cost saving, as well as data safety and privacy. The major challenge [26] in applying

deep learning algorithms and building visual categorization system is to devise a

high-performance mechanism that utilizes the edge computing power for accurate

recognition within limited response time and computation resources.

www.manaraa.com

13

Chapter 3

CURRENT STATE-OF-ART OF

RELATED RESEARCH

Despite a large body of knowledge in image recognition, very little research has

been conducted to study the performance of deep learning-based system in mobile de-

vices, or to balance between the system accuracy and the latency, power consumption

and hardware constraints. Another related research efforts are in the area of medical

image analysis, especially in the field of tuberculosis diagnosis. Even though much

efforts are put in general feature engineering, few of them use deep learning methods,

especially for tuberculosis detection. In this section, we will discuss the current state-

of-art methods of related work in image recognition, medical image analysis and edge

computing.

3.1 Image Recognition and Object Detection

Object detection and image recognition is one of the fundamental problems

in computer vision. Much of previous work has focused on extracting features from

the images followed by matching or classification algorithms. These feature-based

methods can be divided into two categories. The first category is to use template

www.manaraa.com

14

matching that search over the image of interest (IoU) to identify the object and

measure the similarity of the template with the regions. Common features are used

to measure such similarities, including cross-correlation coefficient [32], Fourier de-

scriptor [33] and texture features [34]. The second category is called model-based

approaches, focusing on searching the correspondences between the model and image

features. Unlike the simple template matching that searches through all the possible

candidates, model-based approach use various heuristics to guide and improve the

search. Typical example include the tree-based search model [35], alignment-based

method [36].

However, in recent years, with the development of large scale, well-annotated

dataset and increasing computation capability equipped with CPU and GPU, deep

learning based approaches show excellent performance comparing with the previous

feature-based methods. More and more neural network structures are devised to

speed up the training process and improve the accuracy [1, 10, 12, 21]. Such opti-

mization focus on introducing more neural network layers [12], reducing the abundant

computation neurons [37], adding noise in activation function [23] and introducing

non-linearity to avoid saturation [38]. In the recent public leader board of ImageNet

challenge, deep learning based CNN model and approaches have surpassed all existing

feature-based approaches by a large margin. The rational behind such difference is

that deep learning-based approach can learn the inherent features that is not hard

coded as human engineered features, these improvement can encode more image in-

formation in the feature map and boosts the representation ability.

3.2 Edge-based Image Recognition System

Recent years have witnessed the vast progress in edge devices [31, 39, 40].

Under the edge computing infrastructure, part of the data processing tasks may be

www.manaraa.com

15

pushed to the edge of the network. One of the core idea is called “Collaborative

Edge” [31], which refers to the architecture that connects the edges of multiple stake-

holders. These stakeholders may be geographically distributed and they may have

distinct physical location and network structure. Under this infrastructure, the cloud

paradigm is extended to the edge of the network. Therefore, such an edge comput-

ing service infrastructure offers a unifying paradigm for cloud-based computing and

Internet of Things (IoT)- based computing. It has the potential to address the issues

of delayed response time, reduced battery life, limited bandwidth, and data security

and privacy. However, most of the existing use cases of edge computing-based image

recognition applications [41, 42] are relatively simple examples with small data sets.

Novel user cases and intriguing applications with more challenging tasks, such as

larger data sets and sophisticated computation, are needed for evaluating the efficacy

and effectiveness of edge computing in various tasks, especially for the time consum-

ing applications that embeds with complex deep learning model and requires long

processing time. In such application [26], more computation offloading is proposed

and evaluated to achieve better accuracy within limited time.

Edge computing could yield many benefits. Most of the edge computing sys-

tems have shown fast response time and reduced energy consumption. Comparing

with traditional cloud computing paradigm, edge computing can utilize the edge de-

vice’s computation capability and reduce the network transmission time. For example,

researchers [43] show that using cloudlets to offload computing tasks can improve the

response time between 80 and 200 ms and reduces energy consumption by 30 to 40

percent. Security and privacy are another two benefits. By conducting computation

on the edge devices, the data is preprocessed and sensitive information is eliminated

to protect the user’s privacy. In most of existing healthcare and edge computing

application [41, 44], the data is preprocessed and transferred to the cloud devices by

offloading some computation in the edge side, preserving the important feature in-

www.manaraa.com

16

formation and reducing the abundant and sensitive information simultaneously. The

development of edge computing system in healthcare domain using the existing cloud-

based service infrastructures, has began to shown its significance in reducing system

latency, improving accuracy and minimizing resource consumption.

3.3 Deep Learning in Medical Imaging

In medical image research community, especially tuberculosis (TB) diagnosis

in X-ray images, due to the limited size of dataset, it’s very hard to train a CNN

model for accurate classification. The research focus in such field can be divided into

two categories. The first one is to build a large scale, well-annotated dataset. While

there are some evaluation efforts in TB screening tests on developing countries, to the

best of our knowledge, there is no large-scale, real-world, well-annotated, and public

available X-ray image database dedicated for TB screening diagnosis. Most of the

existing research in the area of computer-aided TB screening employed small data sets

for evaluation and validation. Most of the datasets have less than 200 images. There

are a few large data sets, such as ImageCLEF, JSRT Digital Image Database, and

ANODE Grand Challenge Database, have over tens of thousands images. However,

they only include one or two aspects of TB manifestations (e.g., pulmonary nodule).

Without a large scale data sets with high qualify annotation, it will be very difficult to

determine the efficacy of existing and proposed approach when applied to real-world

clinic data. Furthermore, dedicated image annotation software tools and database

storage software that can support the manipulations of the X-ray images are needed

to facilitate the image annotation and image management.

Second, much efforts are put into designed good deep learning models for

accurate classification. Even though CNN and other deep learning can have good

performance in general image classification tasks, it’s still very hard to apply the

www.manaraa.com

17

Figure 3.1: Various TB manifestations with minor differences in the same category.

deep learning model into the medical dataset directly, due to the minor differences

and various kinds of confusion and noise in the images. As shown in Figure 3.1, these

TB manifestations are very hard to distinguish and find the differences, even for the

human annotator and doctors. In modern deep learning based medical imaging mod-

els [45, 46], several network structure and training strategy are proposed to eliminate

the dependence on the dataset size and image quality. For example, Ronneberger et

al [47] proposed a network called UNet to combine CNN layers with up-sampling

layers for image segmentation. These networks modified the kernel size and sam-

pling methods, combine multiple layers and encode more layers’ feature maps, such

optimize has shown excellent performance in boosting the accuracy.

www.manaraa.com

18

Chapter 4

FOOD RECOGNITION AND

DIETARY ASSESSMENT

Literature has indicated that accurate dietary assessment is very important for

assessing the effectiveness of weight loss interventions. However, most of the existing

dietary assessment methods rely on memory. With the help of pervasive mobile de-

vices and rich cloud services, it is now possible to develop new computer-aided food

recognition system for accurate dietary assessment. However, enabling this future

Internet of Things-based dietary assessment imposes several fundamental challenges

on algorithm development and system design. In this chapter, we set to address these

issues from the following two aspects: (1) to develop novel deep learning-based visual

food recognition algorithms to achieve the best-in-class recognition accuracy; (2) to

design a food recognition system employing edge computing-based service computing

paradigm to overcome some inherent problems of traditional mobile cloud comput-

ing paradigm, such as unacceptable system latency and low battery life of mobile

devices. We have conducted extensive experiments with real-world data. Our results

have shown that the proposed system achieved three objectives: (1) outperforming

existing work in terms of food recognition accuracy; (2) reducing response time that

www.manaraa.com

19

is equivalent to the minimum of the existing approaches; and (3) lowering energy

consumption which is close to the minimum of the state-of-the-art.

4.1 Introduction

In the US, more than one-third (34.9% or 78.6 millions) of adults are obese

and approximately 17% (or 12.7 millions) of children and adolescents aged 2 to 19

years are obese [48]. There were more than 1.9 billion adults, 18 years and older, were

overweight on earth in 2014 [49]. Documenting dietary intake accurately is crucial

to help fight obesity and weight management. Unfortunately, most of the current

methods for dietary assessment (for example, 24 hour dietary recall [50] and food

frequency questionnaires [51]) must rely on memory to recall foods eaten.

In the last few years, we have witnessed an explosive increase of mobile and

wearable computing devices (e.g., the smart watch and smart phone) in the consuming

electronics market. One common characteristic of these devices is that many of them

have inexpensive, unobtrusive and multimodal sensors. These sensors enable us to

collect multimedia data (e.g., video and audio) in natural living environments. Due

to the ubiquitous nature of mobile and wearable devices, it is now possible to use

these devices to develop pervasive, automated solutions for dietary assessment [52,

53, 54, 55]. One example of such solutions is to use mobile devices as a pervasive

food journal collection tool and to employ cloud service as a data analysis platform.

The combination of mobile device and cloud service could contribute to improving the

accuracy of dietary assessment. As a result, in the last few years, we have seen several

mobile cloud software solutions to improve the accuracy of dietary intake estimation.

One common issue among these solutions is that the users of the software must enter

what they have eaten manually. To address this issue, visual-based food recognition

algorithms and systems have been proposed [53, 54]. A recent review by Martin et

www.manaraa.com

20

al. [56] also indicated that using digital imaging techniques for food recognition is

superior to many other methods of dietary assessment techniques. Some advantages

of visual-based food recognition systems include: reduced burden for users to recall

the food, improved accuracy and efficiency of dietary recall.

While promising, one of the major barriers of adopting automatic dietary as-

sessment system into practice is how to design and develop effective and efficient

algorithms and system to derive the food information (e.g., food type) from food

images. Considering the limited computation resources and low battery life on mo-

bile device, it is more challenging to develop such a system within the mobile cloud

computing paradigm. We have carefully investigated this problem and have identi-

fied two major challenges. The first major challenge is how to design effective and

efficient analytics algorithms to achieve optimal recognition accuracy. The second

major challenge is how to develop a system that can minimize energy consumption

and response time.

To address the first issue (recognition accuracy), we plan to develop new deep

learning-based algorithms. Deep learning [57, 58] (also known as representation learn-

ing, feature learning, deep structured learning, or hierarchical learning) is a new area

of machine learning research. It allows computational models that are composed

of multiple processing layers to learn representations of data with multiple levels of

abstraction. In the last five years, these techniques have improved the state-of-the-

art in speech recognition, computer vision, natural language processing, and many

other domains. Our extensive experiments in this chapter have shown that, compared

with traditional hand engineered features (e.g., SIFT [4]) and shallow learning-based

classification algorithms (e.g., Support Vector Machine (SVM)), our proposed deep

learning-based classification algorithms could improve the recognition accuracy sub-

stantially. We also developed other image analysis algorithms to enhance the food

image quality for data analysis. All these algorithms have been integrated into an

www.manaraa.com

21

edge computing based real-time computing system, which is discussed in the next

paragraph.

To address the second issue (energy consumption and response time), we aim

to design and employ a real-time food recognition system employing edge computing

service paradigm. The proposed system distributes the data analytics throughout

the network by splitting the food recognition task between the edge devices (close

to end users) and the servers (in the cloud). Edge computing refers to the enabling

technologies that allow computation to be performed at the edge of the network in

a stream fashion. Edge computing is a non-trivial extension of cloud computing

from the core network to the edge network [43, 59, 31, 39, 40, 60, 61]. The proposed

edge computing service infrastructure is particularly useful for our application because

most of the mobile devices have limited computation capacity and battery life. Hence,

it is difficult for them to support computational-intensive tasks. At the same time,

our proposed food image analysis algorithms usually involve heavy computation and

may require much more computation resources.

In this chapter, we focus on two major research efforts. The first research effort

aims to develop new food recognition algorithms, including new food image recogni-

tion algorithms based on deep learning and image pre-processing and segmentation

algorithms to enhance the quality of food image. The second research effort aims

to design a real-time food recognition system for dietary assessment. The proposed

system employs edge computing service paradigm and distributes the data analytics

throughout the network. Specifically, the proposed system will split the food recog-

nition tasks between the edge devices (which is physically close to the user) and the

server (which is usually located in the remote cloud). For example, in our system, the

edge devices (e.g., users smart phone) can perform light-weight computation on food

image for food recognition. Then, our system will transmit the food images (after the

light-weight computation at edge device) to the server in the cloud to perform more

www.manaraa.com

22

accurate recognition tasks. By distributing the analytics throughout the network, our

system can achieve significant improvement in the recognition accuracy, while mini-

mizing the response time and energy consumption. In this project, we implemented a

prototype system to verify our hypothesis and evaluate the proposed algorithms. Our

prototype runs on both edge device (Xiaomi Note, running Android 6.0.1 marshmal-

low) and server (an in-house GPU cluster). We also conducted extensive experiments

with real world data. The results show that our system achieves very impressive

results on the following three aspects. First, to the best of our knowledge, the food

recognition accuracy using our proposed approach outperformed all other reported

results. Second, the response time of the proposed system is equivalent to the mini-

mum of the existing approaches. Last but not the least, the energy consumption of

the proposed system is close to the minimum of the state-of-the-art.

The rest of the chapter is organized as follows. In Section 4.2, we introduce

related work in computer-aided dietary assessment, visual-based food recognition,

deep learning, and edge computing. In Section 4.3, we present the architecture,

components, and algorithms for the proposed system based on deep learning and

edge computing. In Section 4.4, we describe the implementation details of our system.

Section 4.5 presents the evaluation results, which include recognition accuracy, power

consumption, response time, etc. Section 4.6 discusses the system limitations. In

Section 4.7, we make concluding remarks.

4.2 Related Work

Estimating dietary intake accurately with a high-quality food journal is crucial

for managing weight loss [62]. Unfortunately, due to many technical barriers, how to

improve the accuracy of dietary intake estimation is still an open question. In this

chapter, we aim to develop a systematic approach as a first step to address this issue.

www.manaraa.com

23

We envision that there are four most relevant research areas, listed as below.

The first related research area is to enhance the accuracy of diet assessment

with computer-aided solutions. Due to the recent advances in electronics, it is now

possible to develop computer-aided solutions to transform healthcare from reactive

and hospital-centered to preventive, proactive, evidence-based, person-centered. Di-

etary assessment is one such area that has gained a lot of attentions from both

academia and industry. Among thousands of existing mobile cloud health software

and hardware, we have seen many of them (e.g., MyFitnessPal, MyNetDiary, and

FatSecret) are dedicated for improving the accuracy of dietary estimates. However,

all these applications require the user to enter everything they ate manually. To

address this issue, several applications have been developed to improve the level of

automation. For example, a recent App entitled “Meal Snap” aims to reduce human

efforts by asking the user to take a picture, enter some quick information such as

whether user is eating breakfast or lunch, and add a quick text annotation if the user

wants to. Unfortunately, the accuracy of calorie estimation is heavily dependent on

the accuracy of the manually entered text from user. Therefore, the accuracy is very

unstable. Another example of such application is named “Eatly”. This application

requires the user to take the food image and then rates the food into one of the three

categories (“very healthy”, “it’s OK.”, and “unhealthy”). However, the actual rating

is performed manually by the community, which consists of the users of this App. In

this chapter, we propose new algorithms and system that can recognize the food im-

ages (captured by the user with their mobile devices) automatically. This automation

reduces the users burden substantially.

The second related research area is to perform dietary analysis using food im-

ages and/or videos. In one paper [53], researchers proposed an approach to combine

a learning method (manifold ranking-based techniques) and a statistics method (co-

occurrence statistics between food items) to recognize multiple food items. In another

www.manaraa.com

24

study [54], the authors proposed a method for fast food detection by researching the

relative spatial relationships of local features of the ingredients and a feature fusion

technique. NIH also funded a project named “Technology Assisted Dietary Assess-

ment (TADA)”. Researchers under this project have investigated different aspects of

computer-aided dietary assessment, such as food item recognition, mobile interface

design, and data development for food images. They have published several papers

on food image recognition [55, 63, 61]. Most of the existing visual-based food recogni-

tion algorithms employed traditional signal processing with hand-engineered features

(e.g., SIFT [4], HOG [3]) and shallow machine learning algorithms (e.g., SVM). Only

very recently, with the striking success of deep learning, people started to research

the application of deep learning for food image recognition [29]. Deep learning has

the potential to address one main issue associated with existing techniques, which

is that the hand engineered features may be useful for screening a few categories of

food item but are unable to generalize to other food types. The proposed approach

in this chapter is also based on recent advances in deep learning. Related work in

deep learning is introduced in the next paragraph.

The third related field is deep learning, which is a branch of machine learn-

ing. It allows the computers to learn from experience and understand the world in

terms of a hierarchy of concepts using a deep graph with multiple processing layers.

Each concept is defined in terms of its relation to simpler concepts [57]. Essentially,

deep learning is trying to solve the central problem in representation learning by

introducing representations that are expressed in terms of other, simpler representa-

tions [57]. It has already been proven useful in many disciplines, such as computer

vision, speech recognition, natural language processing, bioinformatics, etc. There

are two main classes of deep learning techniques. The first class is purely supervised

learning algorithms, such as Deep Convolutional Neural Network (CNN). The sec-

ond class is unsupervised and semi-supervised learning algorithms, such as Denoising

www.manaraa.com

25

Auto-encoders and Deep Boltzmann Machines. In this chapter, we focus on deep

Convolutional Neural Network (CNN) [10]. Our proposed approach is rooted from

CNN and it belongs to the category of supervised learning algorithms. CNNs are

biologically inspired [64] (animal visual cortex) variants of Multilayer Perceptrons

(MLPs). It is consisted of neurons that have learnable weights and biases. Compared

with MLPs, CNN has several distinct features. First, by enforcing a local connec-

tivity pattern between neurons of adjacent layers, CNN could exploit spatially local

correlation. Second, each filter in CNN is replicated across the entire visual field,

which share the same parameters (e.g., weight vector and bias). Third, the neurons

are arranged in three dimensions (width, height, and depth). Furthermore, a fea-

ture map can be generated by repeated application of a function across sub-regions

of the whole image. Early implementation of CNNs, such as LeNet-5 [1], has been

successfully applied to hand writing digital recognition. However, due to the lack

of large scale labeled data and limited computation power, CNNs failed to address

more complex problems. With the help of large-scale and well-annotated dataset like

ImageNet [65], new computing hardware such as graphics processing unit (GPU), and

several algorithms advancements such as Dropout [37], it is now possible to train large

scale CNNs for complex problems. Recently, many research, such as VGGNet [21],

ZFNet [22], GoogLeNet [12], Residual Network [66], has been proposed to address the

issue of limited abilities of feature representation. One common strategy is to make

the network deeper and avoid saturation issues. Our proposed approach was directly

inspired by CNN work from LeNet-5 [1], AlexNet [10], and GoogLeNet [12]. The

LetNet-5 [1] is a 7-layer network structure with 32x32 grey-scale image as input for

hand written digital recognition. It includes three convolutional layers (C1, C3 and

C5), two sub-sampling layers marked as (S2, S4), one fully connected layers (F6), and

one output layer. LeNet-5 generates a feature map and feed the feature map into the

two fully-connected layers. After that, a 10-class output is generated. A receptive

www.manaraa.com

26

field (a.k.a. fixed-size patch or kernel) is chosen during the convolutional layer to

compute convolution with the same size patch in the input image. A stride is defined

to make sure every pixel in the original image will be covered. The system will per-

form convolution operation first, followed with a sub-sampling with the feature map.

The goal of sub-sampling is for dimension reduction. Then, we will move to the fully

connected layers, which are used to join the multi-dimension feature maps. Finally,

we will generate a ten-class output, each of which represents one digital (from zero

to nine). Please note, at each layer, the parameters (e.g., weight vector and bias)

are trainable. Recent progresses in CNN have focused on enhancing the object rep-

resentation with more complex models. For example, AlexNet [10] is a seven-layer

model which includes five convolution layers and two fully connected layers. It out-

performed the state-of-the-art object recognition techniques in 2012 ImageNet [65]

challenges with large margin (over 10 percent). Later on, we witnessed many new

models with increased layers, increased layer size, more complex neurons, as well as

sophisticated computation units and layer structures. Dropout and ReLU were pro-

posed to address the issue of overfitting and saturation, respectively. Some excellent

examples include VGG net [21], ZFNet [22], GoogLeNet [12], Residual Network [66]).

The last (but not the least) related research area is edge computing service

infrastructure [43, 59, 31, 39, 40, 60]. Under this infrastructure, part of the data

processing tasks may be pushed to the edge of the network. One of the core ideas

is called Collaborative Edge [31], which refers to the architecture that connects the

edges of multiple stakeholders. These stakeholders may be geographically distributed

and they may have distinct physical location and network structure. Under this

infrastructure, the cloud paradigm is extended to the edge of the network. There-

fore, such an edge computing service infrastructure offers a unifying paradigm for

cloud-based computing and Internet of Things (IoT)- based computing. It has the

potential to address the issues of delayed response time, reduced battery life, limited

www.manaraa.com

27

bandwidth, and data security and privacy. However, most of the existing use cases

of edge computing-based digital health applications [41, 44] are relatively simple ex-

amples with small data sets. Novel user cases and intriguing applications with more

challenging tasks, such as larger data sets and sophisticated computation, are needed

for evaluating the efficacy and effectiveness of edge computing in digital health. Our

proposed application, which focuses on food image recognition for dietary assessment,

employ very complicated computation tasks (e.g., image pre-processing, image seg-

mentation, and deep learning) with large image data sets (in the size of GB). This

application scenario provides an excellent playground to evaluate the efficacy and

effectiveness of edge computing in digital health.

4.3 System Design

4.3.1 Overview

Figure 4.1: Overview architecture of “Deep Food on the Edge” system.

Our food recognition system employs visual sensors to capture food images as

the source data. Due to the recent advances of electronics, visual sensors are now

available in many Internet-of-Things(IoT) devices, such as smart phones. To simplify

the design, we utilized the camera on smartphones for visual sensing. Besides the

smartphone for sensing and image capturing, the recognition is done in a collaborative

manner between the edge device (e.g., smartphone) and servers (e.g., servers in the

www.manaraa.com

28

cloud). As shown in Figure 4.1, our system includes end user layer (left most of

Figure 4.1), edge layer (middle of Figure 4.1), and cloud layer (right most of Figure

4.1), together form a three-layer service delivery model. In our proposed system, data

and computation are kept close to end users at the edge of network. Also, the end

users device can passively record the geological location. Hence, the system could

provide low latency, reduced energy consumption, and location awareness for end

users. The computations are distributed throughout the network, including both the

edge devices and servers in the cloud. Please note, in our system, the recognition is

done in a collaborative manner.

The system design and related components are shown in Figure 4.2. As shown

in this figure, our system consists of the following three major modules:

Figure 4.2: System design and components.

Front-end Component (FC). We deploy the FC module on the edge device

(smartphone). As shown in the top box in Figure 4.2, its consisted of three sub-

modules, which are image pre-processing (e.g., blurry image detection), watershed

detectors, and the filters (OTSU or threshold)-based segmentation. After the image

pre-processing module, an original clear image is generated for segmentation. Next,

www.manaraa.com

29

the watershed detector, combined with different filters (e.g., OTSU-based threshold)

to segment the original image. After segmentation, we can generate the clear and seg-

mented image. These images will be transferred to the server via the Communication

Module (introduced below) for further classification.

Communication Component (CC). CC provides two channels for commu-

nication between the FC and the Back-end Component (BC), which will be introduced

in more detail in the next paragraph. It transfers the image data from the FC to the

BC via Input Channel, and it also passes the detection results from the BC to the

FC via Output Channel.

Back-end Component (BC). The BC module runs on the cloud server,

which is configured to use Caffe [67] (an open source deep learning framework) for

CNN model training and testing. We use pre-trained GoogLeNet by ImageNet and

fine-tune it on our food dataset (UEC-256 and Food-101). Then the trained model is

deployed on the server and used for classifying the image. More specifically, the seg-

mented image is first passed through our proposed CNN model (which is rooted from

GoogLeNet model [12]), then the features are generated from the model, furthermore,

a softmax classifier is used with these features to generate the probability of each cat-

egory. Here we use the top-5 and top-1 probability as our prediction/classification of

the food image. Our evaluation of accuracy is also based on these criteria.

4.3.2 Food Image Analysis Algorithms

In this following section, we will introduce our proposed food recognition algo-

rithms, which runs on the FC and BC. Essentially, our system is a multiple-stage food

recognition system that distributes the analytics throughout the network. This sec-

tion will focus on the food image analysis algorithms part. For CNN-based algorithm,

more details will be given in the following section.

Once the food images are captured, we will conduct two types of computations

www.manaraa.com

30

at mobile device in the Front-end Component (FC) (a.k.a., Edge Layer): image pre-

processing and image segmentation.

The main objective of the first computation (image pre-processing) is to iden-

tify if the image being captured is blurry or not. While many cameras on mobile

devices have features such as optical zoom or auto focusing, in real-world practice,

when users take the pictures of food, they may have very limited time to do so due

to their busy schedule and their photo taking action may be interrupted by other

matters. Hence, the chances of device shaking and other interruptions while tak-

ing pictures are high. An automatic image blurry detection algorithm running at

the mobile device is needed to give a real-time alarm to reminder user to re-take

the picture if the image is blurry. We define an out-of-focus image as blurry image.

Our goal is to develop a light weight and effective blurry image detection algorithms

running at the mobile device. In literature, image restoration has been proposed to

handle blurry images. Unfortunately, these existing methods are not applicable to

our case because these techniques need a reference image to compute the quality of

the test image. In our applications, we may only have test images. Followed our

previous research [68], we propose a simple-feature(such as edginess of the image)

and threshold-based method to divide the images captured into two groups (i.e., the

clear image group and the blurry image group). The edginess of the image is defined

as the number of edge pixels (e.g., detected by Sobel operator) divided by the total

number of image pixels. The rationale behind this method is that the percentage of

edge pixels for clear image (with clear object of interests) is much higher than the

percentage of edge pixels for blurry image. In our previous research, we also noticed

that there are different patterns between the frequency spectrums of clear image and

blurry image. The Fourier spectrum of a blurry image usually shows prominent com-

ponents along the certain degree (e.g., 45 degree) directions that correspond to the

corners of the image. This is because the blurry image usually does not contain clear

www.manaraa.com

31

object information except the four strong edges at the corners of the image running

at certain degree relative to the sides. On the other hand, the clear image usually has

a lot of clear edge information so that its spectrum does not show prominent compo-

nents along certain degree directions because it has a wider range of bandwidth from

low to high frequencies. Based on the aforementioned observation, we first employ

texture analysis algorithms on the frequency spectrum image. Then we extract differ-

ent types of texture features (e.g., entropy, contrast, correlation, homogeneity) from

each image. Once the features are extracted, we employ different types of classifiers

to classify the images into two categories (blurry image or clear image). Similar to

our previous work, we employ a two-step K-means clustering algorithms, the details

is illustrated in the Algorithm 1 and Figure 4.3.

Algorithm 1 Image Preprocessing in the Front-end Component (FC)

INPUT: A set of Image Set : {I1, I2, ..., In}
OUTPUT: Two clusers Setb : {b1, b2, ..., bp}, Setc : {c1, c2, ..., cq}

1: i ← 0 � (initialize iteration index to 0)
2: while i is no more than n do
3: Read one image Ii
4: Extract texture features Ti from frequency spectrum
5: Apply entropy feature extraction from Ti as S1

6: Apply contrast feature extraction from Ti as S2

7: Apply correlation feature extraction from Ti as S3

8: Apply homogeneity feature extraction from Ti as S4

9: Use binary classifier for S1, S2, S3, S4 separately
10: Combine classification result using majority vote
11: if blurry then
12: group Ii into the Setb
13: else
14: group Ii into the Setc
15: end if
16: end while

The main objective of the second computation (image segmentation) is to

segment the image into two parts: foreground (which contains the actual food) and

background. Based on the size of foreground, we could crop the image by removing

www.manaraa.com

32

Figure 4.3: Blurry vs. clear image classification using majority vote and image fea-
tures.

some portion of the background that does not overlap with foreground. According

to our own experiments and other people research results, when using deep learning-

based model (which is the main algorithms used in server) for image analysis and

object detection, if we could reduce the background information, the object detection

and recognition accuracy could be improved. Inspired by this observation, we employ

watershed segmentation algorithm to preprocessing the image at FC. In this process,

we first preprocess the image by image segmentation. Then we generate a new cropped

image and send the updated image to the server in the cloud for further processing.

By doing so, we can achieve the following performance improvements: (1) the volume

of data transfer over the network may be reduced substantially. It also reduces the

power consumption caused by network transferring; (2) The response time may be

reduced by shorter transmission time, which will improve the user experiences; (3)

The system uses much less network flow consumption, which is very helpful when

www.manaraa.com

33

the network connection is unreliable, or when the user is connected to the server via

cellular network and/or he or she has limited data plan with the mobile device; (4)

More importantly, the cropped image will eliminate the abundant information and

further improve the accuracy for classification. In theory, the watershed algorithm

is based on the following observations: any gray scale image can be viewed as a

topographic surface, in which the high intensity indicates peaks and hills while low

intensity represents valleys. The watershed algorithm starts filling every isolated

valley with different colored water. When water rises, water from different valleys

with different colors will start to merge. We could avoid this by building barriers in

the locations where water merges. The algorithm continues to fill water and build

barriers until all the peaks are under water. Finally, the barriers the system created

are the segmentation result. Algorithm 2 illustrates the details of the algorithm.

Algorithm 2 Watershed Algorithm using topographical distance

INPUT: The lower complete grey scale Image (V,E, im), which is defined from
original image with a lower boundary

OUTPUT: a sequence of labels on V , representing background or foreground

1: WATERSHED ← 0 � (The label of watershed for every pixel)
2: Init Label with a minima and MASK for other pixels
3: U ← {p ∈ V |∃q ∈ NG(p): im[p] �= im[q]}
4: while not empty(U) do
5: select point p from U with minimal grey value
6: remove p from U
7: for all q steeper than p do � (pixel value is greater in the neighbour)
8: if label[q] == MASK then
9: label[q] ← label[p]
10: else
11: label[q] ← WATERSHED
12: end if
13: end for
14: end while � (Label array represents the boundary)

www.manaraa.com

34

4.3.3 CNN-based Food Image Analysis Algorithms

After the image pre-processing and segmentation at FC, we will further analyze

these images at BC. Our proposed approach running at BC is based on the recent

advances on deep learning, which aims to learn multiple levels of representation and

abstraction that help infer knowledge from data such as images, videos, audio, and

text.

Our proposed approach was directly inspired by CNN work from LeNet-5 [1],

AlexNet [10], and GoogLeNet [12], and it employs a new module called Inception

Module, which is motivated by recent advances named Network-in-Network [69].

This is also similar to the one used in GoogLeNet [12]. In this Inception Module,

an additional 1x1 convolutional layers are added to the original AlexNet [10] network

architecture. This additional layer undoubtedly increases the depth of the network.

However, this addition could also substantially reduce the feature maps dimension.

Therefore, this module could help to remove the computation bottlenecks. Specif-

ically, we use feature map as the input for the Inception Module. After that, we

apply multiple levels of convolutional layers and max-pooling layers. The kernel size

of the convolutional layer varies from 1x1 to 3x3 and 5x5. At each layer, different

outputs are generated and are concatenated to form the new feature map, which is

used as input for the convolution and pooling operation for next layer. In order to

perform dimension deduction, an optimized convolution is proposed based on the

Inception Module. Please note, instead of feeding the input directly into the convo-

lutional layer, an additional convolutional layer with size 1x1 is added to reduce the

input dimension. In addition, the output from the 3x3 max-pooling layer is sent into

an additional convolutional layer with size 1x1. These new designs enable the new

architecture to reduced dimension even the depth of the network is increased. Not

surprisingly, our experiments have demonstrated that, even under constrained com-

putational complexity, this new network structure is able to enhance the ability to

www.manaraa.com

35

capture more visual information. Figure 4.4 illustrates the improved inception mod-

ule. The network structure in the left (Figure a) is the original structure in regular

CNN, such as AlexNet [10]. The right figure (Figure b) is the snapshot of the new

network architecture with Inception Module. As shown in Figure b, the three added

1x1 convolutional layers are annotated with dotted rectangle and green color. While

the number of layers in Figure b is four (which is one layer more than the number of

layers in Figure a), the total dimension of the output (at feature concatenate layer)

in Figure b is still smaller than the output dimension of Figure a.

Figure 4.4: Illustration of the “Inception Module”.

The next step after forming the “Inception Module” is to employ multiple

modules to form the network (similar to GoogLeNet). In this step, we will connect the

two modules using one additional max pooling layer. The output from the previous

module will be used as the input for the next module. Specifically, the concatenated

features (output) from the previous module are fed into the newly added max pooling

layer. The output from the max pooling layer is used as input for next module. Figure

4.5 illustrate this architecture. This figure includes two Inception Module, one (figure

a) is located on the top of Figure 4.5 and another (figure b) is located in the bottom of

the Figure 4.5. These two components (figure a and figure b) are connected via a 3x3

max-pooling layer. Essentially, the new network architecture becomes a hierarchical

level step by step. In order to address the issue of increased time complexity associated

with the increased network layers, we resort to the lessons learned in recent paper [70],

www.manaraa.com

36

which offer some insights for designing the network architectures by balancing factors

such as depth, numbers of filters, filter sizes, etc. In this study, we design a network

structure with 22 layers (similar to the one used in GoogLeNet) with different kernel

size and stride. We have found that, in our study, using an input size of 224x224

with three channels (RGB), combined with 1x1, 3x3 and 5x5 convolutions, produces

the best results. The 22 layers are layers with parameters. We design the pooling

layer whose filter size is 5x5. The convolutional layer is 1x1 and includes 128 filters

and ReLU (rectified linear activation). The dimension of the fully-connected layers is

1024. During pre-training stage, it is mapped into a 1,000-class output, similar to the

ImageNet data set [65]. We use a 70% dropout rate to address the overfitting issue.

Softmax is used for final classifier. Please note, based on the actual food categories,

we will need to adjust the output class number during the fine-tuning stage. The

proposed approach is implemented on top of open source deep learning framework

Caffe [67]. CentOS 7.0 is chosen as our host system. We also use NVidia Tesla K40

GPUs for model training. The model definition is adjusted in prototxt file in Caffe.

We will introduce the implementation details in Section 4.4.

4.4 System Implementation

In order to verify the efficacy and effectiveness of the proposed system, we

implemented a prototype system for food recognition. Specifically, the front-end

component (FC) is implemented on Android 6.0.1 (Marshmallow). The back-end

component (BC) is implemented using server equipped with CentOS 7.0. The im-

plementation of communication component (CC) includes two part. The first part

is on the smartphone where we use Apache HttpClient to communicate with server.

The second part is on the server we employed Django web development framework

and the associated RESTful web service. In this section, we present implementation

www.manaraa.com

37

Figure 4.5: Illustration of module connection.

details.

4.4.1 Implementation of Front-end Component (FC)

We develop an Android application for the front-end module. It runs on Xi-

aomi Note running Android 6.0.1 marshmallow. The image pre-processing algorithm,

the watershed segmentation algorithm, and the threshold filter are also implemented

in this application. The watershed algorithm runs on the local mobile devices and it

is implemented using OpenCV on Android devices. Several pre-defined markers are

first constructed, the algorithm treats each pixel as a local topography, and then it

fills the basins from the markers, until the basins meet on watershed lines. Here we

set the markers as the local minimal of the food image, so that we can start from

the bottom to fill the basins. We use OpenCV 3.10 and port the java SDK into

www.manaraa.com

38

the android studio project, which supports the OpenCV for Android SDK and also

involves the image processing class.

Figure 4.6: Screenshots showing image segmentation implementation in FC module.

The App we implemented has an UI for processing and loading the image.

A screenshot of the UI is shown in Figure 4.6. There is a background thread for

preprocessing the image. After it finishes, the App will display the segmented image

in the applications mainframe. While in the background, the thread does several

tasks when preprocessing the image, that includes: (1) rescaling the image if its

exceed 1024x786, since too large image will increase the computing time and energy

consumption; (2) converting the RGB image to grey level image for further image

processing, the grey image is more easily computed when therere many channels and

pixels; (3) creating the watershed class and watershed threshold for dividing the image

into segments and non-segments; (4) saving and generating a unified image segments

for future transferring.

4.4.2 Implementation of Communication Component (CC)

There are two implementations for communication between the Android device

and cloud server. For the Android application, we use Apache HTTP Client and

www.manaraa.com

39

construct the HTTP POST request to send the segmented image into the cloud server.

First, a connection bound to the server is established, and then we construct the

necessary HTTP header, and fill the content with image file. Then we send the POST

request to the cloud server to finish the transmission. On the cloud server, we deploy a

RESTful web server using Django, which supports the file transferring (image, audio,

video) using HTTP requests. When the server is up and deployed, it will listen to

the port and save the requested file into the pre-configured destination. Our server

will store all the necessary segments for the classification task using trained-well CNN

models.

Figure 4.7: Screenshot showing segmented images being uploaded to the server in
CM module.

4.4.3 Implementation of Back-end Component (BC)

Our back-end system is mainly used for classification when we receive the

images from the mobile device. Before testing, we used pre-trained GoogLeNet model

from ImageNet, and then fine-tuned on public food data set like Food-101 and UEC-

100/UEC-256. After these steps, a fine-grained model is generated which can be used

for specifically food image classification. We use Caffe to train and tune the model.

And our deployment of model is also based on Caffes python interface. We first load

www.manaraa.com

40

the model into memory, when the test food image is fed into the Convolutional neural

network as the input, CNN features are extracted, with max-pooling and rectified

linear-unit (ReLU) layers for dimension reduction and accelerating the convergence

of computing.

4.5 Performance Evaluation

4.5.1 Experiment Setup and Evaluation

In all the following experiments, we use Xiaomi Note running Android 6.0.1

Marshmallow as the front-end to install the FC of our system. This smartphone uses

Qualcomm MSM8974AC Snapdragon 801 featuring Quad-core 2.5 GHz Krait 400 and

an Adreno 330 GPU. It also has a 64 GB of internal storage and 3 GB of RAM. In the

back-end, we use an in-house GPU server. This server is a SuperServer 4027GR-TR

from SuperMicron. It has two Intel Xeon processor E5-2600 with 512GB RAM. This

server is also equipped with four NVIDIA Tesla K40 GPU.

In order to evaluate the effectiveness and efficiency of our system, we imple-

mented two other systems running the state-of-the-art visual-based food recognition

algorithms for comparisons. The first one, entitled as C-System, employs differ-

ent types of computer vision algorithms using hand engineered features (e.g., SIFT,

SURF, HOG, Cascade) running at the mobile device for food image recognition,

without relying on any algorithms running in the server. These algorithms (e.g.,

the Cascade algorithm) have been used in many embedded computer vision systems.

We also implement the second system, called D-System, for comparisons. The D-

system mainly relies on using the state-of-the-art deep learning algorithms running in

the server, without using any image analysis and/or pre-processing computation at

mobile device. Both systems are evaluated against our proposed system, and the per-

formance metrics we use include response time, energy consumption, and detection

www.manaraa.com

41

accuracy.

In our experiment, we use two publicly available and challenging data sets,

which are UEC-256/UEC-100 [71] and Food-101 [72]. As shown in the sub-sections

below, the results of our proposed approach outperformed all the existing techniques

in terms of accuracy. At the same time, the response time and energy consumption

of our system are close to the minimum of the existing approaches.

4.5.2 Experimental Results on UEC-256/UEC-100

As we have introduced before, we employ two data sets for our experiments.

We will introduce our experimental results for the first category in this section, which

is UEC dataset [71]. It was first developed by DeepFoodCam project and the majority

of the food items in UEC dataset is Asian food. This data set includes two sub-data

sets: UEC-100 and UEC-256. The first sub-data set (UEC-100) includes 100 food

categories with a total of 8643 images. There are around 90 images in each category.

The second sub-data set (UEC-256) includes 256 categories with a total of 28375

images. There are around 110 images in each category. The researchers have added

correct annotations for each image, including food category and bounding box (used

to indicate the positions of the food). We use UEC-256 as the baseline dataset since

we prefer to have large scale training data. We divided the images into 5 groups (5

folds). 3 groups (out of 5 groups) were used for training and the rest of the images

were used for testing.

In our experiments, the publicly available, 1000-class category from ImageNet

dataset was used as the pre-trained model. This model (pre-trained model) was

generated by training over 1.2 million images and testing over 100,000 images. Once

we have the pre-trained model, we fine-tuned this model with the UEC-256 dataset.

We fine-tuned the model with a base-learning rate of 0.01, a momentum of 0.9 and

100,000 iterations. The results are shown below in Table 4.1. If we compare the results

www.manaraa.com

42

in Table 4.1 with the results in our previous publication [18], we could make two

discoveries. First, our detection accuracy in this chapter is slightly better. Second,

the number of iterations when we reach the best performance is less than our previous

paper. These two discoveries indicate that, due to the adaption of the proposed new

system and algorithms, both the accuracy and the time complexity have been slightly

reduced.

of Iterations Top-1 accuracy Top-5 accuracy
4,000 46.0% 77.5%
24,000 51.0% 78.8%
56,000 51.3% 79.6%
84,000 53.3% 80.6%
92,000 54.5% 81.8%

Table 4.1: Comparison of accuracy on UEC-256 at different iterations.

We also compared our results with both the C-System and the D-System. As

we introduced before, the D-system is employing different sophisticated deep learning-

based food image recognition algorithms, including the algorithms from the Deep-

FoodCam papers. To make a fair comparison, we used the same dataset as original

papers, which is UEC-100, as well as the same strategy of dividing image dataset,

the result is shown in the Table 4.2. Please note, there are five C-system in this table

because we tried different types of computer vision algorithms using hand engineered

features. Each sub-category of C-system (the first five rows in Table 4.2) represents

one type of hand engineered feature. From this table, we can tell that our proposed

method outperformed all existing methods using the same dataset:

Method Top-1 Top-5
C-System(SURF-BoF+ColorHistogram) 42.0% 68.3%

C-System(HOG Patch-FV+ColorPath-FV) 49.7% 77.6%
C-System(HOG Patch-FV+ColorPath-FV(flip)) 51.9% 79.2%

C-System(MKL) 51.6% 76.8%
C-System(Extended HOG Patch-FV+ColorPath-FV(flip)) 59.6% 82.9%

D-System(DeepFoodCam(ft)) 72.26% 92.0%
Proposed Approach in this chapter 77.5% 95.2%

Table 4.2: Comparison of accuracy between our proposed approach and existing
approaches using the same data set (UEC-100).

www.manaraa.com

43

Table 4.3 shows the corresponding energy consumption of the three systems

upon each food image. This table shows that the energy consumption of our system is

very close to the energy consumption of the both C-system and D-system. Please note,

in Table 4.3, we computed the energy consumption for both image analysis (on mobile

device) and the image transferring (from the mobile device to the server). However,

we did not compute the energy consumption if the computation is performed at the

server in the cloud. Therefore, the D-systems energy consumption for image analysis

is zero because D-system does not include any computation on mobile device. On

the other hand, the energy consumption for image transferring for C-system is zero.

Because in C-system, there is no need for data uploading since all the recognition

tasks have been done on the mobile device.

Method Energy Consumption(Joule)
for Image Analysis

Energy Consumption(Joule)
for Image Transferring

C-System 1.01 0
D-System 0 0.98

Proposed Approach 0.51 0.57

Table 4.3: Comparison of accuracy between our proposed approach and existing
approaches using the same data set (UEC-100).

As of the computation and response time, let’s first discuss the computing

time. Indeed, our algorithms is based on deep learning and training a large deep

learning model requires a large amount of time. For example, on a NVidia Tesla K40

GPU, it takes 2 to 3 seconds per image for forward-backward pass using our proposed

architecture. Since large dataset like ImageNet and Microsoft COCO [73] contains

so many images, it may not be wise to train the model from scratch. One practical

strategy is to use the pre-trained model in model zoo from existing implementation

(e.g., Caffe [67]), which is public for all researchers. In our own experiment, the

training time is largely impacted by the computation capacity of the server (e.g., the

types of CPU and GPU), how large the image candidate is, how many iterations

we choose, and what value we choose for learning rate, etc. According to the rough

www.manaraa.com

44

estimation, if we use the pre-trained GoogLeNet model, then fine-tune on the UEC-

100, UEC-256, Food-101 dataset, it roughly takes 2 to 3 days nonstop for a server

equipped with Nvidia K40 GPU to train the model. Once the model is trained,

we can directly apply the model for classifying the image. On average, it takes 50

seconds for recognition for one image. Therefore, the average response time (the time

duration between capturing the image and getting the food recognition results) is

1 minute per image for our proposed approach, which include time for image pre-

processing on mobile device, the time to uploading the image to server, and the

time for recognition in the server. As a comparison, the response time for C-system

is usually around 35 to 55 seconds (depends on what hand engineered features we

use). For example, the average computation time for a SIFT-like feature extraction

and analysis algorithm on a mobile device (Xiaomi Note) is 50 seconds. On the

other hand, in the D-system, the response time (the time duration between capturing

the image and getting the food recognition results) is 70 seconds per image in our

experiments. This is mainly because in D-system, the image being processed is the

raw image without pre-processing. Hence, we could conclude that the response time of

our proposed approach is very close to the minimal response time of existing approach.

4.5.3 Experimental Results on Food-101

In addition to the first data set (UEC data set), we use the second data

set, Food-101 data set [72], in our experiment. This dataset includes a total of 101

categories. For each food category, there are around 1000 images. We used around

three-quarters (75%) of these images for training and the rest of the images are

used for testing. Altogether, there are over 100,000 images in this data set. One

thing about this data set is that this data set does not provide any bounding box

information (which can be used to indicate the food location in the image). Instead,

this data set offers food type information for each image. Different from the UEC

www.manaraa.com

45

data set, most of the images in this data set are popular western food images.

For this data set, we used a similar implementation as the one used in Section

4.4.1. The parameters were adjusted to fit for this new data set. We used a base

learning rate of 0.01, a momentum of 0.9. Similar to the methods we used in Section

4.4.1, we fine-tuned the model on Food-101 dataset. Table 4.4 below shows the

accuracy (both top-1 accuracy and top-5 accuracy are listed as below). Again, if we

compare the results in Table 4.4 with the results in our previous publication [18],

we can find that, due to the new system and algorithms in this chapter, both the

accuracy and the time complexity have been slightly reduced.

of Iterations Top-1 accuracy Top-5 accuracy
5,000 65.6% 88.7%
10,000 70.7% 91.2%
20,000 73.4% 92.6%
60,000 77.0% 94.0%

Table 4.4: Comparison of accuracy on Food-101 at different iterations.

We also compared our experimental results with the results of both the C-

System and the D-System using the same data set (Food-101 datasets). As shown

in Table 4.5, our proposed method is better than all existing work using the same

dataset and division.

Method Top-1 Top-5
C-System(RFDC-based Approach from Lukas et.al [72]) 50.76% NA
C-System(CNN-based Approach from Lukas et.al [72]) 56.40% NA

Proposed Approach 77.0% 94%

Table 4.5: Comparison of accuracy using different method on Food-101.

From the above table, we can see that pre-trained model with domain specific

fine-tuning can boost the classification accuracy significantly. And fine-tuning strat-

egy improves the accuracy comparing with non-fine-tuning method. The NA value in

the top-5 column means not available, as we used the original experiment data from

their paper [72], and they dont provide the top-5 result in it.

As of the energy consumption and response time, we have similar results re-

www.manaraa.com

46

ported as our previous data set (UEC-256/UEC-100), as introduced in the last para-

graph of Section 4.5.1. Due to the space limitation, we did not report the exact

numbers here.

4.5.4 The Employment of Bounding Box

As shown in both Section 4.5.1 and Section 4.5.2, the detection accuracy of

our proposed approach is better than all existing approaches. We believe that one

of the reasons we could achieve such performance boost is because in our proposed

approach, image pre-processing and image segmentation are performed at the mobile

device before analyzing these images in the server. To verify this hypothesis, we

conducted a simple experiment. Our goal is to demonstrate that even very simple

pre-processing can help improve the recognition performance. For example, we can

use a simple bounding-box strategy to reduce the image size without analyzing the

image content fully.

Specifically, we first employed the bounding box to crop the raw image. After

this processing, only the food image part is remained for training and testing. Then,

we performed similar experiment on UEC-256 dataset.

Method top-1 top-5
Proposed Approach(no bounding box) 53.7% 80.7%
Proposed Approach(bounding box) 63.6% 87.0%

Table 4.6: Comparison of accuracy of proposed approach using bounding box on
UEC-256.

We also conduct the experiment on UEC-100, as follows:

Method top-1 top-5
Proposed Approach(no bounding box) 54.8% 81.4%
Proposed Approach(bounding box) 76.3% 94.6%

Table 4.7: Comparison of accuracy of proposed approach using bounding box on
UEC-100.

As we can see from the two tables (Table 4.6 and Table 4.7), the employment

www.manaraa.com

47

of bounding box could boost the classification accuracy substantially. A simple ex-

planation for this is that the abundant information in the raw image is removed after

the images were cropped using bounding-box. Therefore, a more accurate and clear

image candidate for training can be generated. Please note, these results are valid

only if we assume the majority of food image have the foreground centered on the

image. Using this simple cropping-based approach will not work well if the food is

scattered on different parts of the image. In this case, our proposed approach, which

conducts image pre-processing and image segmentation based on the image content,

is certainly necessary to improve the recognition accuracy.

4.6 Discussion

Our findings indicated that our system achieves very high detection accuracy,

as shown in previous sections. However, the response time, while very close the

minimal of existing systems, is still around 5% slower than the best performer. While

this is not surprising since deep learning-based algorithms are usually very time-

consuming, we believe that more research should be devoted to further improving

the speed. In particularly, we plan to investigate new deep learning algorithms that

can be executed in mobile devices. There are some recent papers that have started

to explore this area with some preliminary results [74], which further motivate us to

pursue this route in the future. While pushing the deep learning-based computation

further to the edge device sounds like a good idea in the initial look, we will have to

consider the energy consumption if we execute the deep learning algorithms at the

edge device. We believe much more research is needed in the area of distributed deep

learning-based analytics in the era of edge computing.

www.manaraa.com

48

4.7 Conclusion

In this chapter, we aimed to develop a practical deep learning based food recog-

nition system for dietary assessment within the edge computing service infrastructure.

The key technique innovation in this chapter includes: the new deep learning-based

food image recognition algorithms and the proposed real-time food recognition sys-

tem employing edge computing service paradigm. Our experimental results on two

challenging data sets using our proposed approach have demonstrated that our sys-

tem has achieved the three major objectives: (1) it outperforms the results from all

existing approaches in terms of recognition accuracy; (2) it develops a real-time sys-

tem whose response time is close to the minimal of existing techniques; and (3) it

saves the energy by keep the energy consumption equivalent to the minimum of the

existing approaches. In the future, we plan to continue improving performance of the

algorithms (in terms of detection accuracy) and system (in terms of response time and

energy consumption). We also plan to integrate our system into a real-world mobile

devices and edge/cloud computing-based system to enhance the accuracy of current

measurements of dietary caloric intake estimate. As our research is related to the

biomedical field, much larger data sets are needed to provide convincing evidence to

verify the efficacy and effectiveness of our proposed system. Backed by several major

federal grants from NSF and NIH, we are in the process of collaborating with UMass

Medical School and the University of Tennessee, College of Medicine to deploy our

system in the real-world clinical practice.

www.manaraa.com

49

Chapter 5

TUBERCULOSIS(TB)

DIAGNOSIS

5.1 Introduction

Tuberculosis (TB) is a chronic and infectious disease that affects the most

disadvantaged populations and involves complex treatment regimes. It remains a

major public health problem with more than 9 million estimated new cases and 1.5

million deaths every year, worldwide [75]. Of the estimated 9 million people who de-

veloped TB in 2013, over 80% were in South-East Asia, Western Pacific, and African.

The majority of the infected populations was from resource-poor and marginalized

communities with weak healthcare infrastructure. This is unacceptable considering

TB is curable and preventable. Efforts to eliminate the TB epidemic are challenged

by the persistent social inequalities in health, the small number of local healthcare

professionals, and the weak healthcare infrastructure found in resource-poor settings.

The global health community has confronted the situation by focusing on developing

and testing effective vaccines, improving the diagnosis process, and promoting patient

adherence to the medical treatment.

www.manaraa.com

50

Reducing the TB diagnosis delay is critical in mitigating disease transmission

and minimizing the reproductive rate of the TB epidemic. The ultimate goal of our

research is to reduce patient wait times for being diagnosed with this infectious dis-

ease by developing a socio-technical system solution to the TB diagnosis problem.

Specifically, we aim to design a user-centered, mobile device-based computing system

to significantly expedite the TB diagnosis process by developing novel image process-

ing and machine learning techniques to analyze chest X-ray images. Our study will

be conducted in the city of Carabayllo, a densely occupied urban community and

high-burden TB area in Lima, the capital of Peru.

Mobile computing techniques offer a unique opportunity to accelerate the TB

diagnosis among resource-poor, marginalized communities with weak healthcare in-

frastructure and systems. However, real-world mobile computing tools and applica-

tions in TB-related clinical practice with the capacity of accurate TB screening using

mobile devices are rare. A wide gap between the technological advancements and

the real-world clinical practices is caused by two major barriers: (1) the first bar-

rier is the lack of large-scale, real-world, well-annotated, and public available X-ray

image database dedicated for automated TB screening. For example, the majority

of existing X-ray image databases, such as ImageCLEF [76], JSRT Digital Image

Database [77], and ANODE Grand Challenge Database, were created mainly for one

or two specific TB manifestations (e.g., pulmonary nodule). To the best of our knowl-

edge, there is no large-scale, real-world, and public available chest X-ray dedicated

for TB diagnosis with high-quality annotation; (2) the second barrier is the lack of

mobile devices-based computing system that can offer accurate diagnosis by analyzing

the chest X-ray images. The use of computer-aided chest radiography for TB screen-

ing and diagnosis [78, 79, 80] has been limited due to the modest sensitivity and

specificity, and high inter- and intra-observer differences in reporting of radiographs.

Hence, the automatic screening for TB in chest radiographs is still a challenging

www.manaraa.com

51

task and an open research problem [81]. Furthermore, there is very few reported

research on using mobile device to capture and analyze the chest radio-graph images

for computer-aided TB diagnosis.

Our research team, which includes computer scientists and health scientists

from both U.S. and Perú, has proposed to develop a mobile device-based computing

solution to overcome the aforementioned barriers. As the first step of developing

such a system, we will introduce the two major progresses we recently made. The

first aspect is related to the development of large-scale, real-world and well-annotated

Xray image database dedicated for automated TB screening. The second aspect is

focusing on developing effective and efficient computational models to classify the

image into different categories of TB manifestations. Efforts described here are part

of a mobile health (mHealth) integrative project aimed at reducing patient wait time

to be diagnosed with TB by implementing a socio-technical solution to optimize the

diagnosis process in a high-burden TB area in Lima, the capital of Perú. In this

chapter, we propose a novel deep learning method with CNN and transfer learning

for classifying TB manifestations in chest X-ray images. Our algorithm and training

protocol show outstanding accuracy and are proven to be practical and stable for

various CNN architectures(e.g., AlexNet [10], GoogLeNet [12]). Experimental results

show a wide potential for medical images analysis and TB diagnosis.

5.2 Background and Related work

In this section, we will first introduce the power of mobile computing in health-

care (Section 5.2.1). Then we will discuss the related work in developing chest X-ray

image database (Section 5.2.2), as well as related work in computer-aided system to

screen the chest radiography image for TB diagnosis (Section 5.2.3).

www.manaraa.com

52

5.2.1 Mobile Computing in Healthcare (mHealth)

Point of care delivery is critical for the success of any application in the clin-

ical healthcare environment. In Perú, as in many developing countries, a mobile

device-based computing solution is very suitable within the context of resource-poor

communities in Lima, Perú. The unique characteristics of the mobile devices such

as its pervasiveness and low cost provide them the opportunity to support and en-

able smart care decision making in a connected health scenario for automatic health

scenario for automatic tuberculosis screening.

1) mHealth in Perú: In a recent review of the mHealth literature published

in Perú, Ruiz et al. [82] showed that mobile health interventions have enormous

potential to improve access and the quality of health services in Perú, increasing

the effectiveness of public health programs and reducing healthcare costs. Out of

19 papers selected, most of them showed a positive impact, and four were about

tuberculosis. It is important to notice that most of them were implemented as pilot

projects [82]. However, the majority of the papers demonstrated that mobile health

interventions are well accepted by the population and well-developed projects might

contribute to reduce the gap in public health, reducing limitations such as lack of

resources (human and logistic) in heath care centers, high dispersion of the population

and lack of infrastructure (roads, transportation and Internet connectivity).

2) mHealth for TB Diagnostics: During the last few years, mobile phones

have been successfully used for diagnosis of tuberculosis [83]. In Perú, Zimic et

al. [84] proposed a relatively minimal investment with mobile phones to facilitate the

diagnosis of tuberculosis using a low cost Microscopic Observation Drug Susceptibil-

ity (MODS) in remote settings where a lack of trained personnel may otherwise be

a limitation [84]. Nowadays, with the advances in mobile processors, images taken

by a cell-phone can be immediately processed and analyzed with the help of smart

algorithms. Today’s global wireless infrastructure also allows transmission of a wide

www.manaraa.com

53

variety of tuberculosis images (such as X-rays) to remote locations for telemedicine

diagnosis. Therefore ubiquitous cell-phone based applications can provide unique

opportunities to combat tuberculosis, especially in developing countries. Recently,

Schwartz et al. [85] assessed the diagnostic accuracy of digital photographs of plain

film chest X-rays obtained using a mobile phone in Botswana. The authors concluded

that digital photographs of chest X-rays obtained via a mobile phone equipped with

a digital camera are comparable to plain film chest X-rays.

3) The need of a timely tuberculosis diagnosis in Perú. In Perú, tu-

berculosis remains as a serious public health problem. A successful treatment plan

requires a proper diagnosis, in addition to good knowledge about drug susceptibility.

Reducing the tuberculosis diagnosis delay is critical in mitigating disease transmission

and minimizing the reproductive rate of the tuberculosis epidemic. Different factors

impact delays in tuberculosis diagnosis, such as: patient health seeking behavior,

healthcare centers with poor infrastructure and equipment, inadequate resources and

information systems (mostly paper-based), lack of (or in-existent) documented pro-

cesses, and lack of human resources as part of a multidisciplinary tuberculosis team.

5.2.2 Developing Chest X-ray Image Database

While there are some evaluation efforts in TB screening tests on developing

countries [86, 87], to the best of our knowledge, there is no large-scale, real-world,

well-annotated, and public available X-ray image database dedicated for TB screening

diagnosis. Most of the existing research [78, 88] in the area of computer-aided TB

screening employed small data sets for evaluation and validation. Most of the datasets

have less than 200 images. There are a few large data sets, such as ImageCLEF [76],

JSRT Digital Image Database [77], and ANODE Grand Challenge Database, have

over tens of thousands images. However, they only include one or two aspects of TB

manifestations (e.g., pulmonary nodule). Without a large scale data sets with high

www.manaraa.com

54

qualify annotation, it will be very difficult to determine the efficacy of existing and

proposed approach when applied to real-world clinic data. Furthermore, dedicated

image annotation software tools and database storage software that can support the

manipulations of the X-ray images are needed to facilitate the image annotation and

image management.

5.2.3 Computer-aided System for TB Diagnosis

The research activities in the area of computer-aided image analysis for tuber-

culosis (TB) screening from X-ray image can be broadly divided into two categories:

(1) the first category is the computer-aided screening and scoring algorithms using

chest radio-graphic features for the TB diagnosis [78, 88]. Research activities in

this category focus on developing different types of visual features and classification

algorithms to score and screen different types of TB manifestations. Most of the pa-

pers employ texture features (e.g., Local binary patterns (LBP) [13, 14], Daubechies

wavelets [15]) or geometry features (e.g., circularity, Hessian shape features). The

classification algorithms employed in these papers range from simple threshold-based

approach or k-nearest neighbors (K-NN) algorithm to more complicated methods,

such as Decision tree and Support Vector Machine (SVM); (2) the second category of

related work is focusing on X-ray image categorization on the organ and pathology

level [17]. The main stream methodology in this area is based on local patch repre-

sentation of the image content (e.g., visual bag of words (BoW) approach). This type

of dense sampling of simple features are then feed to non-linear kernel-based classi-

fier, such as SVM classifier. The ultimate goal is to discriminate between healthy

and pathological cases. It is also shown that this type of methods can successfully

identify specific pathology in a set of chest radiographs.

www.manaraa.com

55

5.3 Proposed Approach

The ultimate goal of our research is to design and deploy a reliable, safe and

secure, simple to use and power efficient mobile based cloud computing system to

screen the chest radiography image with improved accuracy and reader consistency.

As shown in Figure 5.1, our proposed system utilizes traditional client-server (C/S)

architecture, which includes a client using mobile devices (e.g., smartphone, as shown

in the left rectangle in Figure 5.1) and a remote server (e.g., server at Amazon AWS

cloud computing services as shown in the right rectangle in Figure 5.1). The client

and server are communicated via Wi-Fi and/or cellular network with data encrypted

using Secure Shell (SSH) to ensure the security and privacy.

In this section, we will focus on the introduction of the two major progress we

have made recently. As shown in the right side of Figure 5.1, the first activity is to

develop a large-scale, real-world and well-annotated X-ray image database dedicated

for automated TB screening. The second research activity focus on developing effec-

tive and efficient computational models to classify the image into different categories

of TB manifestations. We will introduce this two progresses in the following two

sub-sections.

Figure 5.1: Overview of proposed mobile based system for improving TB diagnosis.

www.manaraa.com

56

5.3.1 Developing Chest X-ray Image Dataset

To first build deep learning model, we have to build a large-scale, well-annotated

chest X-ray image dataset, as there is no such big dataset available. The main chal-

lenge in this component includes: (1) where and how to gain access to the real-world,

large-scale TB screening images with detailed diagnostic descriptions; (2) to deter-

mine the types of TB manifestations we should target and how we can use these

manifestations to annotate each X-ray images; and (3) to develop dedicated anno-

tation software and database management software package for reviewing the chest

radiography, locating important contents, annotate them, and extract the annotated

contents for research, teaching, and training purposes.

Here we propose several approaches to solve the above issues. To address the

first challenge, we established an international research team which include scientists

from both U.S. and Perú. One of the core team members is Dr. Jesus Peinado, header

of Informatics at Partners In Health at Perú. In the past three years, his team in Perú

has collected around 5,000 chest X-ray radiography images captured from real-world

TB patients with detailed TB screening descriptions. In addition to that, we also

explored the second source of image is the X-ray images from the 2004 - 2013 Image-

CLEF collection, which include over 400,000 medical images, diagnostic annotations,

search topics and relevance judgments. The 2004 - 2007 collection [89, 90, 91] contains

over 66,000 images from a variety of teaching files annotated in English, French or

German. The 2008 - 2010 collection [92, 93] contains over 77,000 images and captions

from the medical literature. These images were published in Radiology and Radio-

graphics, two of the journals published by the Radiological Society of North America.

The 2011 - 2013 collection [94] includes more than 300,000 image and related text

annotation from the biomedical literature (e.g., PubMed). To address the TB mani-

festation issue, we worked very closely with our clinical and research collaborators, Dr.

Jesus Peinado from Peru and Dr. John Bernardo at Boston Medical Center(BMC)

www.manaraa.com

57

and Boston University School of Medicine (BUSM), to generate a scientific catego-

rization of TB manifestations. As shown in Figure 5.2 we have identified five TB

manifestations. There are some important discoveries (which will serve as important

motivations and rational for the proposed approach for image analysis and machine

learning techniques) from these images. First, the variety of the TB manifestations

is large. Second, each category of TB manifestation actually indicates the severity

of the TB disease. Therefore, algorithms that can recognize and classify the X-ray

image into different type of TB manifestation can serve the purpose of screen the

X-ray image to understanding the severity of the TB disease.

Figure 5.2: (a) Air space consolidation which showing glass opacity with consolidation
in the right middle lobe; (b) Miliary pattern with seed-like appearance; (c) Cavity
located at the lower lobe (annotated by arrows); (d) Pleural effusion, which is excess
fluid that accumulates in the pleural cavity; (e) Calcified granulomata: The red
arrow indicates a large 5 cm diameter squamous cell carcinoma of the right lower
lobe and there is 1.5 cm bright opacity in the middle of the mass (which is a calcified
granuloma). Additional calcified granulomatous areas are medial to the mass, as
indicated by blue arrow.

5.3.2 Collecting Chest X-ray Image Annotation

In addition to developing the real-world database, we also developed annota-

tion software for reviewing the chest radiography, locating important contents, anno-

tate them, and extract the annotated contents for research, teaching, and training pur-

poses. While there are many existing efforts in medical image annotations [95, 96, 97],

there is few open source annotation software dedicated to annotating X-ray image to

support automatic screening. Based several existing open source annotation software

www.manaraa.com

58

projects [98], we developed a web-based annotation software.

In general lines, the annotation software is a tool in which someone capable

can highlight the location at the image in which some TB manifestations is occurring.

However, this task is not possible without the guidance of a specialist. We trained a

team with around 10 members who were trained directly by the Pulmonologist Dr.

John J. Bernardo. The train were provided for each TB manifestation isolated, and

some extra training to verify complex cases. The annotation is performed using our

own software developed exclusively for this purpose. The common interface of the

annotation software can be seen on Figure 5.3. In the left panel are all the images in

which the annotator is working on.

Figure 5.3: Annotation software interface.

The images have a color to identify the current annotation status: blue for the

image shown in the central panel, green for the images already annotated and red for

images with no annotation. On the middle, we have the main panel which contains

the current image with every annotation on it, the system pick one specific color for

each different manifestation, on the right side of the annotation panel the annotator

can see all the annotated polygons listed, also, the annotator can hide the polygons

www.manaraa.com

59

to see a clean image and can highlight individually each polygon as well. When the

annotator starts an annotation, he/she clicks in a point to be the initial vertex of a

polygon, after, he/she keeps indicating each subsequent vertex of the polygon, and

finally close the polygon with a click in the initial vertex, in the moment in that the

polygon is finished, a popup window shows up asking the details about the regions

highlighted, it includes the TB manifestation, the confidence level, and possibly some

notes (Figure 5.4 - left). The manifestation may be informed using some default

options in a select box (Figure 5.4 - right), or the annotators may choose to pick the

option other and write the manifestation themselves.

Figure 5.4: Pop up to inform the manifestation and details.

The right panel (Figure 5.5) shows important information provided by the

team in Perú coordinated by Dr. Peinado that helps the annotator to provide the

correct manifestation, the items cover the main TB manifestations possible to be

found in x-ray images (seen in Figure 5.5) may be verified with some details in this

panel, including sometimes the side (right, left or bilateral) in which a specific man-

ifestation is. Also, the right panel provide two buttons, the first one is a “Get New

Image” that adds to the annotator’s personal collaboration one more image to be

annotated. This button, randomly select an image lacking annotation and gives it to

www.manaraa.com

60

the annotator, so, there is no pre-selected image to a specific annotator. The anno-

tator also may skip the image using the button “Skip Image”, it makes the current

image returns to the set of non-annotated images, any annotation made is discarded

and the image are available to any annotator again.

Figure 5.5: Right Panel, buttons and golden information.

The information shown in this panel is not the only support the annotators

have, on the bottom there are some images annotated by a pulmonologist using the

same software to work as a sample to the annotators, when any image is clicked, a

new window opensshowing the sample as in Figure 5.6.

As mentioned, the annotation software is designed for capable annotators, in

our context, capable annotators are people who received a training to identify and

localize TB manifestations. To make annotations in an x-ray is a tough task even

to experienced pulmonologists. Because of this, the annotators received one training

www.manaraa.com

61

for each TB manifestation, during the training also is collected some images to be

used as a sample as shown in Figure 5.6, after the training all the annotators work in

the same manifestation until all images from that specific manifestation is covered.

However, images may contain more than one manifestation at the same time, in these

cases, only the current manifestation is being annotated, and the remaining wait for

the next training.

Figure 5.6: Images annotated by a pulmonologist (top) to be choose, one specific
image open as a sample (bottom).

We call the training and the following annotation as cycle as we can see in

Figure 5.7, the cycle repeats for each new manifestation. In each cycle the annotation

software also provides a feedback to the annotator about your current collaboration,

including how many images left in your work or in the entire cycle. The cycles

starts with the training following to the annotation and, after finished the annotation

for each collaborator, a new meeting with the pulmonologist is made to work on

cases annotated with low confidence, for this review the pulmonologist has a special

page that loads only the images with low confidence and without any button, the

pulmonologist can edit the annotation or just change the confidence level if it is well

www.manaraa.com

62

annotated, the pulmonologist has access to the collaborator responsible by that one

to further clarification.

Figure 5.7: Cycle for annotation process that repeats for each TB manifestation.

After this closing meeting, all the annotatios are stored and no more are going

to appear to annotators. From the second cycleonwards, the same images may appear

again asking for the annotation of different manifestations, in these cases, all the

previous annotations are shown to help the annotator to differentiate the current

manifestation from the previous ones, the annotator also can correct the previous

annotation for a more accurate one.

After all the cycles, except by the images containing health lungs, all the other

images contain the annotations for each manifestation so the images are ready for be

used in a region based classifier.

5.3.3 Convolutional Neural Network

After collecting the large-scale, well-annotated chest x-ray image dataset, the

next step is to research and develop effective and efficient computational model for TB

manifestation analysis. There are several major challenges for solving this problem.

The main challenges of automatic TB screening come from the extremely complexity

and large variety of the TB manifestations. This is true in clinic practice. As we

www.manaraa.com

63

have shown in Figure 5.2, the variations of TB manifestations can range from sub-

tle military patters to apparent effusions. Via close collaborations and discussions

with domain experts, we have discovered that unusual or abnormal TB manifesta-

tions affect the texture and geometry of the anatomy. Therefore, most of the existing

techniques employ texture and/or geometry features. Usually, different features are

useful for different manifestation. For example, texture features, such as Mean, Vari-

ance, Entropy, and Third moment, can be employed for detecting infiltration and

dense. Local binary patterns (LBP), another type of texture spectrum feature, can

be used for cavity detection. Template matching on Fourier domain, a method for

geometry feature extraction, maybe useful for detecting the miliary pattern. Hessian

shape features, another type of geometry features, could help to detect the nodules.

Recently, researchers [78, 79] have shown that combine multiple features can improve

the performance of abnormal TB image detection. For example, in paper [79], LBP

and histogram of oriented gradients (HOG) are combined for cavity detection. In

paper [78], a mixture of Intensity, LBP, and Hessian shape features are employed

to measure normal and abnormal patterns in the X-ray image. The literatures have

shown that the choice of features play the key role for system performance. Hence, the

key issue is how to improve these hand-tuned features. To address these challenges, we

plan to explore new solutions based on recent advances in deep learning [99, 100, 97].

Deep learning, aims to learn multiple levels of representation and abstraction

that help infer knowledge from data such as images, videos, audio, and text, is mak-

ing astonishing gains in computer vision, speech recognition, multimedia analysis,

and drug designing [18]. Briefly speaking, there are two main classes of deep learn-

ing techniques: purely supervised learning algorithms (e.g., Deep Convolutional Net-

work), unsupervised and semi-supervised learning algorithms (e.g., Denoising Autoen-

coders [19], Restricted Boltzmann Machines, and Deep Boltzmann Machines [20]).

With the help of large-scale and well-annotated dataset like ImageNet, its now feasible

www.manaraa.com

64

to perform large scale supervised learning using Convolutional Neural Network(CNN).

The issue of convergence has been addressed by Hintons work in 2006. Subsequent

theoretical proof and experimental results both shows that large scale pre-trained

models in large domain, with specific small scale unlabeled data in another domain,

will give excellent result in image recognition and object detection. To address the

issue of limited abilities of feature representation, many researchers have proposed

more complex CNN network structure, like VGG [21], ZFNet [22], GoogLeNet [12]

and so on. On the other hand, ReLU [23] is also proposed to make it converge faster

and also gains a better accuracy. Most of current researchers have put efforts in

making the network deeper and avoid saturation problem.

Convolutional Neural Network(CNN), on the other hand, is widely used in

multiple computer vision tasks, such as image classification, object detection and

visual question answering. While many efforts have been given to general tasks, few

of them focus on medical images. Here we study two convolutional neural network

architectures(AlexNet [10] and GoogLeNet [12]) with different model parameters.

Comparing with general image applications [10, 12], deep learning models for medical

images tend to be smaller [101], as the region-of-interest(ROI) are usually small. We

adopt this schema and use various CNN models and smaller size of kernels to find

the best fit for the TB chest X-ray images.

Figure 5.8 shows a basic structure for TB classification using LeNet [1]. A CNN

model is usually consist of convolutional layers, pooling layers, and fully-connected

layers. Each layer is connected to the previous layer via kernels that have predefined,

fixed-size receptive field. The weights within each layer are shared to reduce complex-

ity and computation. CNN model learns the parameters from a large-scale dataset

to represent the global and local features in the image. Every model architecture has

various types of layers and activation functions to exhibit strong feature representa-

tion ability than human-engineered features. More details of the network structure

www.manaraa.com

65

are discussed in [10, 12, 57, 97].

Figure 5.8: CNN architecture(LeNet[1]) for TB classification.

5.3.4 Transfer Learning

Transfer learning aims to store the learned knowledge from one domain and

apply it to another different but related domain. When training from scratch, it

usually takes a lot of time because model parameters are all initialized with random

Gaussian distribution and convergence are achieved after at least 30 epochs with a

batch size of 50 images. Another challenge is that in the medical domain it’s usually

very hard to obtain large-scale, well-annotated images. Lacking of medical data

usually makes it very hard to learn precise models for accurate predictions.

Recent studies[45, 102, 42, 103, 97] show that using a pretrained model from

ImageNet dataset, then finetune with a more specific dataset yield outstanding clas-

sification and detection results. The reason behind this training protocol is that CNN

gains general representation capability from pretraining in natural images. After fine-

tuning, the model adjusts the parameter for representing the unique features in the

specific images, while retaining the abilities to represent general image. We inherently

adopt this training strategy, combine with shuffle sampling and cross-validation, and

creatively apply it to the chest X-ray images for classifying TB manifestations. Our

experiment shows the outstanding performance for TB diagnosis.

www.manaraa.com

66

5.3.5 Detecting TB manifestation

Our main objective is to analyse the X-ray images and to screen the chest

radiography image with improved accuracy and reader consistency. We convert the

screening problem into a classification problem. More specifically, we will investigate

effective and efficient computational models to segment the image into smaller region

and classify the image region into different category of TB manifestations (e.g., Air

space consolidation, Miliary pattern, Cavity, Bronchiectasis, Opaque, etc.). As shown

in Figure 5.9, our proposed approach includes the following three steps.

Figure 5.9: Proposed approach for X-ray image analytics.

1. Extraction of region proposals : In this step, we will extract regions from the

image using different methods like selective search [104]. For each region, train

a CNNmodel to calculate the new features for further classification. Please note,

before we perform the feature extraction process, the region should be scaled

to a fixed size 227x227 (in order to the same vector dimension in our further

handling). After the above handling, we should generate a 4096-dimensional

feature vector. The features from CNN will be combined with features originally

transmitted from mobile phone. We will apply the linear classifier like Support

Vector Machine (SVM) [105], the combined features for final region classification

and TB manifestations recognition. For the implementation purpose, we use the

open source Caffe [67] for training. The training of the proposed CNN approach

could include two steps: (a) supervised training on a large dataset using CNN;

www.manaraa.com

67

(b) fine-tuning the CNN feature for detection using a smaller dataset. Our

preliminary study has shown the feasibility of the proposed approach for a small

group of images. In this study, we plan to extend and refine our preliminary

results to large scale, real-word X-ray image datasets.

2. Initial Image feature extraction: In this step, we will extract both global and

local features from the X-ray images captured by the mobile device. While

there exists a large number of global features ranging from color, texture, to

edge features, we mainly choose texture and shape features because the cutting-

edge research in computer-aided TB screening using X-ray imaging have shown

that texture and shape features are most effective. Some sample global features

we used include: Gabor features and Local Binary Patterns (LBP) features.

Some sample local features include SIFT features [4] and PHOG [106].

3. Deep Convolutional Neural Network (CNN)-based X-ray Image Analysis : Recall

in our first step, we have extracted some features from the original image. Hence,

we do not need to transmit the entire image. Instead, we resize the image at

mobile phone and only transmit the image with much smaller size. In our

preliminary test, we reduce the size by half and the results are still acceptable.

By doing so, our system will consume substantially less power, compared with

transmitting the original image. Another contribution in this component is

that we plan to employ the deep convolutional neural networks (CNN) for region

classification. Our proposed techniques are rooted from recent advances on deep

learning, such as region deep convolutional neural networks [11, 107], which take

full use of region features.

www.manaraa.com

68

5.4 Experiments

We conducted several experiments on a private TB X-ray image dataset from

Perú and followed the standard evaluation protocol, used multiple training models

and got the average as the final accuracy.

5.4.1 Dataset Details

Category (Name of TB Manifestation) Total Image
Miliary Disease (MI) 25
Cavitation (CA) 1182

Lympahadenopathy (LI) 202
Ghon Focus (GH) 27

Alveolar Infiltrates (AI) 2252
Other (OT) 560

Table 5.1: Data distribution in TB dataset.

The dataset is from our Peruvian partners at “Socios en Salud”, Partners In

Health in Lima, Perú. This dataset contains 4701 images, 453 of them are labeled

as normal (which means the patients don’t have the TB) and 4248 are labeled as

abnormal that contain various TB manifestations. Among the abnormal TB images,

there are 6 categories, which indicate 6 different types of TB manifestations: miliary

pattern, cavitation, lymphadenopathy, ghon focus, alveolar infiltrates and others.

Table 5.1 illustrates the characteristics of the data. This less-category and imbalanced

distribution casts a unique technical problem for classifying the image. In the next

sections, we will show our architecture design and optimization that improves the

performance by a large margin.

5.4.2 Architecture Details

We revise the AlexNet and GoogLeNet architecture for image classification.

On the top of AlexNet/GoogLeNet, we place a softmax layer to get the score for

www.manaraa.com

69

each category. Each score ranges from 0 to 1 and represents the probability of clas-

sifying the manifestation correctly. When training AlexNet, we use the standard

7-layer network structure[10], which is consist of five convolutional layers and two

fully-connected layers. Dropout and ReLU are deployed to address overfitting and

convergence issue. For GoogLeNet, we use the 22-layer network structure[12] that

employ the Inception model with dropout and ReLU. We implement our architecture

using Caffe. Our model is trained using Stochastic Gradient Descent(SGD), with a

lot of combinations of different parameters. By experiment, we find that for AlexNet,

a base learning rate of 0.01, a momentum of 0.9 and weight decay of 0.0005, would

yield the best result within reasonable time. For GoogLeNet, we use a base learning

rate of 0.001, a momentum of 0.9 and weight decay of 0.0002. Note that learning

rate is not fixed and will decrease exponentially as iteration grows. Since the chest

X-ray images are still not abundant for training large complex model, we use the

pretrained model from ImageNet that are public available in Model Zoo among the

Caffe community and then finetune on our chest X-ray image database.

5.4.3 Shuffle Sampling

For very imbalanced dataset, it’s very hard to learn a general classifier for all

categories. How to augment data is crucial to learn an expressive classifier to classify

all TB manifestations. Inspired by the previous work from [108], we propose a shuffle

sampling technique to augment data. Our method is done before the training of

CNN models, so it doesn’t affect the training time substantially. According to our

experiments, the training time for using shuffle sampling increases about 2 hours for

our 5K images with AlexNet, while the accuracy boost from 53.02%[42] to 85.68%.

As Figure 5.10 shows, we first select the largest number of category as the

baseline number of instances, marked as N . Then for each category, we generate N

unique integers, each integer represents the index for one image. For each category,

www.manaraa.com

70

Figure 5.10: Shuffle sampling for imbalanced data.

we calculate the mod value Ii%Nc as the final index, Ii is the index from the unique

sequence of each category, Nci is the number of maximum images for each category.

Here N is 2252, and Ii is from the random array. After these shuffle samplings, we

expand our dataset into N ∗ c, where N is the maximum number of images for all the

categories, and c is the number of categories.

5.4.4 Results

We study several cases of classifying the manifestations and evaluate their

performance. For each model, we use non-shuffle and shuffle sampling settings for

four common manifestations, these manifestations have more training images than

others. We first pretrain on AlexNet using ImageNet dataset, then finetune using the

same network structure with chest X-ray images. Figure 5.11 shows that shuffle one

is more accurate than non-shuffle one in all iterations and remains stable in general

cases.

The final classification accuracy using AlexNet is about 85.68%, a significant

improvement from non-shuffle sampling’s 53.02% in[42]. Note that since this strategy

may generate repeated images for testing, influencing the final evaluation of accuracy,

www.manaraa.com

71

Figure 5.11: Non-shuffle vs. shuffle classification accuracy.

Figure 5.12: Classification accuracy with cross validation. Use AlexNet for binary
classification and GoogLeNet for full classification

we use the trained-well model to retest all the images in the training data with the

unique id to verify its correctness, we calculate the precision, recall, f1-score and miss

rate. Table 5.2 shows the stability of our method to classify the images on the original

training set.

We also conduct an experiment on abnormal detection using AlexNet, which is

to determine whether a chest X-ray image contains TB or not. This is a binary clas-

sification problem, we use cross-validation repeatedly. By dividing the whole dataset

into 5 equal folders, we used 4 folders as the training set and the remaining 1 folder as

the test set. We also explore the deployment of GoogLeNet for all six manifestations

with shuffle sampling and cross-validation to enhance the model prediction. Results

are shown in Figure 5.12 and Figure 5.13.

www.manaraa.com

www.manaraa.com

73

stability and universality in various CNN architectures. The next step is to collaborate

with health science and engineering researchers to annotate the regions of the chest

images for more accurate classification and localization. We will use more region-

level information for preprocessing and study the algorithms to further improve the

accuracy. We will also deploy a user-centered, mobile device-based computing system

to expedite the TB diagnosis process and conduct the field-testing in TB clinics in a

high-burden TB area in Lima, the capital of Perú.

www.manaraa.com

74

Chapter 6

VEGETABLE IMAGE

RECOGNITION

In self-service supermarket and retail industry, efforts to reduce the wait time

for customers using automatic identification of grocery items are challenged by low

recognition accuracy, long response time and substantial requirement for equipment.

In this chapter, we propose a novel edge computing system named EdgeVegfru for

vegetable and fruit image classification. While existing work on Vegfru dataset shows

outstanding performance, few of them have been deployed in real-world applications.

We adopt an edge computing paradigm and implement the whole system on the An-

droid devices. The proposed deep learning model and quantization algorithm reduce

the model size and inference time significantly. Our system has shown outstanding ac-

curacy within limited time and computation capability, comparing with other machine

learning methods(Support Vector Machine(SVM), Gradient Boosted Tree(GBT) and

Random Forest(RF)), thus providing the potential path for automatic recognition

and pricing in self-service retail stores.

www.manaraa.com

75

6.1 Introduction

Self-service Technologies (SSTs) are those interfaces that allow customers to

experience service without directly dealing with the service employees [109]. Emerging

technologies in artificial intelligence and computer vision are adopted in self-service

facilities to save labor cost and improve the check-out efficiency. However, previous

advances in technology is still lagging behind under the strict accuracy and response

time constrains. In the retail industry, especially the grocery stores and food markets,

the need for high-accurate, low response-time intelligent system is becoming a critical

factor to improve customer satisfaction and store profits. In this chapter, we focus on

developing efficient and accurate algorithm and system for automatic recognition of

vegetables and fruits for grocery stores. Our motivation arises from the urgent need

of store owners. In real world scenarios, even though many grocery items have been

tagged with price, the semi-intervention of store employee is still essential, especially

for vegetables and fruits, due to their various packaging and pricing methods. Another

factor that delays the process is the strict requirement for grocery item label to align

with the electronic scanner during checking out. Most of the customers and newly-

hired service employees find it hard to align the price label with electronic scanner.

By using the automatic recognition of grocery items, most of the tagging and scanning

work can be saved, thus improving the overall efficiency of checking out and reduce

human labor cost.

According to the survey [110], the in-store technologies are changing over the

years, including evolving transformations, such as hand held scanners, the use of

smartphone, artificial intelligence and geofencing technology heralded by Amazon

Go [111]. In modern automated retail store like Amazon Go, customers are able to

purchase products without being checked out by a cashier or using a self-checkout

station [112]. The just-walk-out technology behind such facility involves computer

vision, deep learning algorithms and sensor fusion. Under such advanced technology,

www.manaraa.com

76

the system depends heavily on the deployment of multiple sensors, especially various

types of cameras. By using images and videos captured by the camera, the deep

learning algorithm can accurately predict the product types and quantities. Among all

such technologies, convolutional neural networks (CNN) have become the state-of-art

method in various computer vision tasks, especially in the field of image classification.

Various CNN architectures [10, 21, 12] have been proposed and shown outstanding

performance in public datasets, including ImageNet [65], Microsoft Coco [73] and

OpenImage [113]. The success of such CNN-based algorithm and applications relies

on the rapid advancement in computing hardware and well-annotated datasets.

Existing datasets mainly consist of general objects and few of them focus on

vegetables and fruits. As the urgent need for automatic classification of vegetable

and fruit in retail industry increases, researchers have made great efforts to build

large-scale, well-annotated fruit datasets. Vegfru [114] is one of the most recent

large-scale domain-specific datasets for fruits and vegetables. However, algorithm

design and application are still lagging behind the development of dataset. In this

chapter, we adopt the edge computing paradigm to realize fast and accurate on-

device image classification on mobile platforms. Our system is composed of two parts:

1) training deep learning models on the server using a compressed neural network;

2) developing and deploying an application running on mobile devices for fast and

accurate inference. We develop an Android app to demonstrate the on-device CNN-

based image classification on mobile devices, as depicted in Figure 6.1. To the best of

our knowledge, this is the first attempt to deploy a large-scale CNN network for fruit

and vegetable recognition on mobile devices. The main contributions of our research

include:

1. We study and evaluate different CNN architectures and training parameters to

get higher accuracy compared with other methods;

2. We use model compression and quantization to optimize the model for mobile

www.manaraa.com

77

and embedded devices;

3. We design and develop an Android app for model inference and image classifica-

tion, and evaluate the response time, memory consumption and CPU usage on

the device. Our extensive experiment results show that our system can achieve

excellent recognition accuracy with limited computation resources in a short

time frame. Our application has shown great potential in the retail industry

and supermarkets.

4. We conduct application study in real world scenarios in the grocery store and

supermarkets in China and USA by collecting the customized fruit and vegetable

image dataset in these areas separately and retrain our models using proposed

approach. Our new model shows outstanding result in these application and

provides potential to be deployed in real world retail stores and supermarkets.

Figure 6.1: System demo for classifying vegetable and fruit using mobile device.

www.manaraa.com

78

6.2 Background and Related work

There has been rising interest in using CNN-based model to improve the ac-

curacy and reduce the response time for mobile vision applications. Existing work

on mobile vision can be divided into three categories: model-based vision applica-

tion [115], device-based mobile system [29] and edge-based computing paradigms [116].

6.2.1 Model-based Application

Recent years have witnessed the explosive advances in deep learning models.

With the development of hardware, it’s now possible to run CNN models on the

mobile devices and lightweight embedded devices. The efforts in this field can be

divided into two categories. The first category is to devise novel network architecture

that exploit computation and memory efficient operation. Howard et al. [117, 115]

proposed MobileNet that utilize the depth-wise and point-wise convolution to build

lightweight CNNs and reduce inference time. ShuffleNet [118] used point-wise group

convolution and channel shuffle, to greatly reduce computation cost while maintain-

ing accuracy. DenseNet [119] proposed another structure that connects each layer

to every other layer in a feed-forward fashion which substantially reduce the number

of parameters with high accuracy. The second category is to use compression and

quantization techniques to compress CNN models to reduce its resource demands.

Jacob et al. [120] proposed a quantization scheme that allows inference to be carried

out using integer-only arithmetic, which can be implemented more efficiently than

floating point inference on integer-only hardware. Raghuraman et al. [121] presented

techniques of quantizing the convolutional neural networks for inference with integer

weights and activations. DeepCompression [122] also proposed a three stage process-

ing pipeline: pruning, trained quantization and Huffman coding to reduce the storage

and memory constrains.

www.manaraa.com

79

6.2.2 Device-based Mobile System

There has been a significant amount of research going on and plenty of them

focus on studying the system performance of deep learning system running on the

mobile devices. Previous work on system research focus on the overall evaluation

metrics when conducting the recognition tasks, which include accuracy, inference

time, response time and power consumption [24, 61]. The studied system can be

divided into two categories. The first category focus on studying the combination

of cloud-based server and mobile devices [25, 26]. Researchers developed the system

using mobile and cloud server together. Chen et al. [25] proposed to use mobile-edge

and cloud services for system integration and studied the influence of computation

offloading for multiple-users. Kang et al. [27] designed a lightweight scheduler to

automatically partition DNN computation between mobile devices and data centers

at the granularity of neural network layers to reduce latency and power consumption.

The second category focus on developing system without cloud intervention. Keiji and

Austin et al. developed a system [28, 29] for food recognition using CNN architecture

and running the inference on-device separately. Latifi et al. [30] designed a system

called CNNDroid for running CNN models on Android devices with GPU-accelerated

execution. The device-based mobile approaches studied the system performance in

real-world scenarios and provide complete evaluation and guideline for deployment.

6.2.3 Edge-based Computing Paradigms

Edge computing [31] usually refers to the enabling technology that allows

computation to be performed at the edge of the network. The “edge” devices can be

any computing and network resources along the path between data sources and cloud

data center. The data source can be any sensing devices like smartphone, smartwatch,

PDA and tablet that collect sensor data like image, audio and video. Cloud data

center is equipped with powerful servers that can perform complex computation and

www.manaraa.com

80

data processing. By utilizing the computation ability of edge devices, we can address

the critical issues of response time requirement, battery life constraint, bandwidth

cost saving, as well as data safety and privacy. The major challenge [26, 123] in

applying deep learning algorithms and building visual categorization system is to

devise a high-performance mechanism that utilizes the edge computing power for

accurate recognition within limited response time and computation resources.

Most of the current research for automatic categorization of vegetable and

fruit images are focused on two aspects. The first aspect is to build a large scale,

well-annotated high-quality dataset [124, 125, 126], providing the foundation for de-

signing well-structured deep learning models and neural networks. The second aspect

is to design a highly efficient algorithm that utilize the previous dataset and achieve

the state-of-art precision or speed. Recent years have witnessed an increase of avail-

able datasets. Hou et al. [114] have collected and annotated the largest fine-grained

vegetable and fruit dataset VegFru that contains 292 categories. Other efforts in devel-

oping such dataset include the Fruits-360 [127], DeepFruit [128], Food-101 [72], UEC-

256 [129], but they only contain a small number of categories and images. With the

development of well-annotated dataset, the next big challenge for developing accurate

algorithms for categorization is to address the inter-class and intra-class differences

within the dataset. Recent progress in convolutional neural network [10, 21, 12, 66]

has shown significantly better performance than hand-engineered features (shape,

color and texture) [124, 130].

In this chapter, we adopt the structure and computing paradigm of edge com-

puting and develop our edge-computing based system based on convolutional neural

network. Our efforts are divided into three parts. We first train our customized neu-

ral network based on MobileNet [117, 115] which could reduce the computation and

inference time. Then we compress and quantize the trained model using tensorflow

for mobile deployment. Furthermore, we implement the model inference and develop

www.manaraa.com

81

an Android application to classify the image and video in real time.

6.3 Proposed Approach

The ultimate goal of our research is to design and deploy a reliable and effi-

cient system to classify various vegetable and fruit images within limited time and

computation capability constraints. The main contributions of our research include:

1) We study and evaluate different CNN architectures and training parameters to get

higher accuracy compared with other methods; 2) We use model compression and

quantization to optimize the model for mobile and embedded devices; 3) We design

and develop an Android app for model inference and image classification, and evaluate

the response time, memory consumption and CPU usage on the device.

6.3.1 Convolutional Neural Network

Convolutional Neural Network is widely used in computer vision tasks, such as

image classification, object detection, and visual question answering. A convolutional

neural network is usually composed of convolutional layers, pooling layers, and fully-

connected layers. Each layer is connected to the previous layer by predefined, fix-

sized kernels. The weights or parameters within each layer are shared to reduce

computation complexity. By using carefully designed network architecture, the CNN

model learns the parameters from a large-scale dataset to represent the global and

local features in the images without using hand-crafted features. Every model has

various types of layers and activation function as well as different number of layers

and connections that can exhibit strong hidden feature representation ability than

human-engineered features. More details of the network structure can be found in

[10, 57, 1].

Most of previous CNN models are designed for desktop computer or servers

www.manaraa.com

82

with reasonable CPU, memory and GPU support. In this chapter, we explore var-

ious CNN models suitable for mobile devices. While general CNN models such as

AlexNet [10], GoogLeNet [12], ResNet [66] show good results for the large benchmark

dataset ImageNet, for domain-specific fine-grained dataset VegFru, due to the minor

difference between different classes, the models fail to achieve the best performance.

Another drawback of such general models is that they contain a large number of

parameters, making it unsuitable to be deployed directly on the mobile devices due

to the long inference time and large memory footprint. To tackle such problems, we

dive deep into the neural network structure and propose several training strategies to

achieve the best result with limited resources.

MobileNet. MobileNet is a light-weight convolutional neural network that

uses depth-wise separable convolutions to build network specifically for mobile and

embedded devices. Normally it contains 6 convolutional blocks conv1, conv2, ..., conv6,

as shown in Fig.6.2. Each block contains some 3x3 kernels with a stride size of 1 or

2. conv1 is a convolutional layer with 3x3 kernel and the stride size is 1. For conv2,

conv3, conv4 and conv6, they contain repeated units such as two depthwise (DW)

convolution layer with a 3x3 kernel and the stride size is 1 and 2 separately. conv5

contains 5 layers of depthwise convolution. The whole network is formed by appending

a fully-connected layer and softmax layer to the convolution structure, producing a

classification score for each pre-defined class in the dataset. The last softmax layer

has a fixed size that equals to the class number. Here we use 292 for the whole Vegfru

dataset. A depth-wise separable convolution is a form of factorized convolutions that

factorize a standard convolution into a depth-wise convolution and a 1x1 convolution.

As illustrated in Fig.6.2, each unit in the dotted rectangle has similar structure as the

right module, which contains a 3x3 depthwise convolution layer and 1x1 pointwise

convolutional layer, with one batch normalization (BN) layer and rectified linear

unit (ReLU) appended after each convolutional layer in thie module. By using this

www.manaraa.com

83

Figure 6.2: Proposed method using MobileNet.

www.manaraa.com

84

convolution to replace standard convolution, a new network structure is formed as

MobileNet.

6.3.2 Transfer Learning

Transfer learning [131, 102] is a popular method in computer vision that helps

to build accurate models in a time-saving way. As shown in Fig.6.3, transfer learn-

ing aims to apply the learned knowledge from one domain to another different but

related domain. Instead of starting the learning process from scratch, it starts the

learning process from previous pretrained model, which usually requires large number

of images to learn powerful features, thus reducing the learning time and requirement

for large-scale domain-specific dataset. A pretrained CNN model on ImageNet has

been widely used for transfer learning, either by using pretrained network as a fea-

ture extractor or using it to finetune the whole network. During finetuning, the

model can still learn powerful weights to represent image features without too much

training data. The reason behind such a training strategy is that the CNN model

gains general representation ability from pretrained model on natural images. After

finetuning, the model adjusts the parameters to represent the unique features in the

target dataset. Experimental results show that transfer learning is very effective on

major public datasets [132]. When finetuning a model, there are usually several kinds

of strategies to achieve the best result. The first strategy is to train the entire model

that updates all the parameters in every layer. This usually requires a large number

of training images. Another strategy is to train some layers and leave the others un-

changed, or freeze the whole convolutional base and only update the fully-connected

layers. This latter strategy is suitable for large dataset with small amount of model

parameters. In our experiment, we replace the last softmax classifier layer with our

predefined layer and then explore all possible strategies. Our model is pretrained

from ImageNet dataset and finetuned on our Vegfru dataset to get the best accuracy

www.manaraa.com

85

using those training strategies to achieve the best result.

Figure 6.3: Transfer learning - training on small domain-specific dataset from pre-
trained model.

6.3.3 Model Quantization

Mobile quantization [122, 121] refers to the technique that allows for the re-

duced precision representation of weights and activations for both storage and com-

putation. As a result of quantization, memory access for reading and storing inter-

mediate activations are largely reduced. As shown in Fig.6.4.

To provide practical support for general models, we use Tensorflow [133] to

implement our algorithm and neural network. Furthermore, we conduct post-training

quantization that quantizes that weights and activations. The post-training quanti-

zation quantizes weights to 8-bits of precision from floating point, thus reducing the

model size and providing up to 3x speed up with little degradation in model accu-

racy. As shown in Fig.6.4, the dotted rectangle depicts the added module for weights

www.manaraa.com

86

Figure 6.4: Model quantization.

and activation quantization. After the quantization, the computation and in-memory

storage are significantly reduced. Here we use Tensorflow-lite (TF-Lite) to conduct

such a conversion. More specifically, TF-Lite provides built-in models and quantiza-

tion tools called TOCO to convert trained tensorflow model to a compressed format

*.tflite. Such quantization and on-device inference will use the 8-bit instead of float-

ing point operation on the original model. Our experiment result shows that such a

conversion improves the speed significantly.

6.4 Experiments

We conduct extensive experiments on the public Vegfru image dataset and

follow the standard evaluation process. The model accuracy, memory consumption

and response time are compared for several different models.

www.manaraa.com

87

Figure 6.5: Fru92 dataset images.

Figure 6.6: Veg200 dataset images.

6.4.1 Dataset Details

Due to the limitation of publicly available vegetable and fruit datasets, we

only conduct our experiment on Vegfru [114] dataset, as it is the first large-scale,

well-annotated dataset. This dataset covers vegetables and fruits with 25 upper-level

categories and 292 sub-level categories, accounting for more than 160,000 images in

total. For vegetables, it has 15 sup-classes with 200 sub-classes and every category

has a maximum of 1,807 images and a minimum of 202 images. For fruits, it contains

10 sup-classes and 92 sub-classes and every category has a maximum of 1,615 images

www.manaraa.com

88

and a minimum of 202 images. There are 91,117 images for vegetables and 69,614

images for fruits in total. Fig. 6.5 and Fig. 6.6 show the thumbnails for images from

the fruit and vegetable category separately. Table 6.1 illustrates the characteristics of

the dataset, with the number of images for each sub-class varying from 200 to 2,000.

Here we also name the vegetables as Veg200 and Fru92 for the fruits. In the following

section, we will evaluate the accuracy of our model on these datasets separately.

#Sup #Sub #Min #Max
Vegetables 15 200 202 1807
Fruits 10 92 202 1615

Table 6.1: Data distribution in VegFru dataset.

6.4.2 Hyperparameter Tuning

We finetune our model based on the pretrained MobileNet model from Im-

ageNet. For the last layer of the MobileNet, we place a softmax layer to get the

confidence score for each category. Each score ranges from 0 to 1, representing the

probability of classifying each class correctly. When training our MobileNet model,

dropout and ReLU are used to address the overfitting and convergence issues. We use

Tensorflow and TF-Slim to implement our neural network architecture. The model

is trained using stochastic gradient descent (SGD) with different combinations of

parameters.

For MobileNet, we choose two hyper-parameters, width multiplier and resolu-

tion multiplier. Width multiplier α is defined to thin a network uniformly at each

layer. α ranges from 0 to 1 with a typical value of 0.25, 0.5, 0.75 and 1. α = 1 is

the baseline MobileNet model and smaller α defines thinner models. The resolution

multiplier ρ is used to reduce image size. In practice, we usually set the input size

implicitly to be 128, 160, 192, 224 for different ρ values. By experiments, we find

that using larger image resolution will contribute to the increase of accuracy without

www.manaraa.com

89

introducing too much latency. We use 224x224 as the input image size for training

the neural network.

6.4.3 Implementation

Our experiment contains two parts: the server side and client side. In the first

stage, we train our models in various settings with different parameters and choose

the best performer as the final selected model. We train all the models on multiple

NVIDIA Tesla K80 GPUs using Tensorflow. During training, the input image is

randomly cropped from the original image and resized to a fixed input size with

scale. We train all networks using the RMSProp optimizer with a momentum of 0.9,

and the batch size of 32. The initial learning rate is 0.045, with exponential decay

of 0.98 per epoch. We use batch normalization after every layer, and the standard

weight decay is set to be 0.00004.

In the second stage, we convert and quantize the trained-well tensorflow model

to TF-Lite format to reduce the model size and shorten inference time. Then we build

an Android application that follows the standard testing procedure. An image is first

preprocessed before being fed into the neural network. The original image is center

cropped and resized to the target input size 224x224. Then we remove the mean

value for each pixel afterward. The model inference is implemented in Java on the

Android devices using libtensorflow and other built-in Android libraries for image

preprocessing.

6.4.4 Model Evaluation

We classify all the classes for the whole datasets (VegFru, Veg200, Fru92). For

each dataset, we evaluate the performance on the super-classes and their sub-classes.

To make a fair comparison, we strictly follow the same data splits as in VegFru. For

each subclass, the first 100 images are selected as train set, the following 50 images

www.manaraa.com

90

as val set, and the rest as test set. As released in the original dataset, the image lists

are used to construct the tfrecords for training our models. All models are evaluated

with the test set. The results are shown in Table 6.2. Note that due to the missing

splits and image lists (Veg200’s super-class and Fru92’s super-class), the result on

such two sets is not available in our experiment.

Table 6.2 shows that our proposed MobileNet model can achieve the state-

of-art accuracy in all datasets. The classification accuracy on super-class is usually

better than on sub-class due to the more significant difference in super-class and the

minor intra-class difference in sub-class. This single model is trained in one-stage

without any model ensemble, which makes the inference faster and more suitable for

mobile devices.

Dataset Category CaffeNet VGGNet GoogLeNet MobileNet

Veg200
15 sup-classes 74.92% 83.81% 83.50% -
200 sub-classes 67.21% 78.5% 80.17% 82.26%

Fru92
10 sup-classes 79.86% 86.81% 87.54% -
92 sub-classes 71.60% 79.80% 81.79% 83.43%

VegFru292
25 sup-classes 72.87% 82.45% 82.52% 82.72%
292 sub-classes 66.40% 77.12% 79.22% 81.72%

Table 6.2: Baselines on VegFru for CNN models. The typical CaffeNet, VG-
GNet, GoogLeNet are chosen as baselines while MobileNet are compared with the
previous state-of-art results.

Table 6.3 shows that our proposed MobileNet model can achieve the state-

of-art accuracy in all datasets over other feature-based machine leanring methods.

Here we use PHOW features as our feature descriptors. As shown in [106], PHOW

features are a variant of dense SIFT descriptors extracted from multiple scales. Using

the same splits of training and testing dataset as for the CNN-based method, we

first build the feature vocabulary, then compute the spatial histograms and generate

the bins for feature encoding, and finally generate the feature maps. In the last

step, a SVM and random forest classifier are trained based on the feature maps. For

www.manaraa.com

91

SVM implementation, we use VLfeat’s MATLAB imeplementation1. SGD and SGCA

solver are chosen separately to get the best result. For random forest, we try different

configurations of parameters and find that a maxium number of 100 tress and a max

depth of 9 generate the best result. Experimental results show that our proposed

CNN model achieves best classification accuracy and outperforms these traditional

feature based classifiers by a large margin.

Veg200 Fru92 Vegfru292
PHOW+SVM (sgd, [106]) 24.54% 26.41% 18.45%
PHOW+SVM (sgca, [106]) 28.81% 30.33% 26.06%

PHOW+RF 40.73% 43.21% 38.01%
MobileNet(proposed) 82.26% 83.43% 81.72%

Table 6.3: Baseline on Vegfru for other classifiers. The typical SVM, Random
Forest (RF) are chosen as baselines while MobileNet are compared with the previous
state-of-art results.

6.4.5 System Evaluation

In the second stage, we evaluate our system on mobile devices. As shown

in Table 6.4, our model is first converted to a frozen graph file to store the graph

definition of the neural network structure. We remove the nodes that are not called

during inference, shrink expressions that are constant into single nodes and optimize

away some multiplication operations during batch normalization by pre-multiplying

the weights for convolutions. Then we use TF-Converter to convert the frozen graph

to TF-Lite format for reducing storage and inference. The result shows that the

model size decreases by more than 60% from the original tensorflow model. We also

evaluate our MobileNet and Inception-v3 model derived from the GoogLeNet on a

UnisCom MZ96-Plus tablet equipped with Intel Z23735F Quadro cores. As shown

in Table 6.5, the inference time, storage and memory consumption are significantly

reduced compared with other baseline models without sacrificing the classification

1http://www.vlfeat.org/overview/svm.html#tut.svm

www.manaraa.com

92

accuracy. For simple baseline models like AlexNet and VGGNet, our model can even

outperform them with much less computation resources.

Checkpoint Frozen graph TF lite
Veg200 29MB 9.8MB 9.5MB
Fru92 27MB 9.2MB 8.9MB

Vegfru292 31MB 11MB 9.9MB

Table 6.4: Model size on Vegfru. The trained model is converted to frozen graph
and quantized to TF-Lite format.

Model Time Storage Memory CPU
Inception-v3(lit) 3291ms 84MB 129MB 41%

Inception-v3(lit-quant) 2890ms 22MB 109MB 33%
MobileNet(lit) 573ms 11MB 74MB 31%

MobileNet(lit-quant) 462ms 9.9MB 67MB 27%

Table 6.5: System evaluation on MobileNet and baseline model for time, storage,
memory consumption and CPU utilization on mobile devices.

The proposed approach and system has three characteristics: First, the system

can provide potential deployment solution for building automatic vegetable and fruit

recognition solution in retail store. Second, the algorithm and method presented here

utilize memory and computation efficient CNN models for mobile devices that can

be applicable to other embedded devices and intelligent systems. Third, the system

provides stable service, fast response and high accuracy.

6.4.6 Application Study

To verify the effectiveness of our proposed system, we collaborate with su-

permarkets for deployment in real application scenarios. Even though our model

improves the accuracy significantly, there is some gap between machine-based vision

recognition and human recognition. To overcome such gap, we dive deep into the

specific problem and dataset. There are several factors that causes the deterioration

of accuracy: 1) the minor difference within the same super class. For example, in

www.manaraa.com

93

the original VegFru292 dataset, there are multiple kinds of mushrooms that belong to

different categories. However, in real world scenarios, there are only limited kinds of

mushrooms available in specific area and supermarkets; 2) the random noises in the

image dataset, especially for the misclassified label, text occlusion and other objects

in the foreground and background; 3) the various angle, environment and exposure

in the images crawled from the internet.

To address the aforementioned issues, we explore two kinds of efforts. Firstly,

we ask our collaborator in China to collect a new dataset with their smartphone and

tablet. Such images are taken in real grocery stores and only contain limited kinds

of categories. We use such dataset to train and evaluate our model’s accuracy. Such

efforts will help to reduce noise and reduce the number of categories, thus improving

the overall accuracy, as shown in Table 6.6. Our dataset is named GroCN20 which

contains 20 categories of very common vegetables in grocery stores in China. There

are 13,192 images in total, with 80% of them used for training and the rest used as

the test set. Our experiment result shows that our model can achieve a very high

accuracy with nearly no false classification. Such model and dataset development

will help to boost the training accuracy and speed up the deployment in real world

application settings.

Second, to study the feasibility in the United States, we visit various grocery

stores in the US and choose the corresponding vegetable and fruit categories. Since

VegFru292 contains many categories that only appear in specific countries and areas,

we manually choose 26 categories of fruits and 46 categories of vegetables that appear

in the supermarket Market Basket 2 from the original VegFru dataset. Most of the

fruits and vegetables in Market Basket are covered in our new dataset. We name

these two datasets as FruMB26 and VegMB46 separately and combine them as Veg-

FruMB72. We use the same approach and strategy to train and evaluate our model.

2http://www.mygrocerychecklist.com

www.manaraa.com

94

The new dataset still use the 80/20 splits as the training and testing set. As shown in

Table 6.6, our model shows excellent accuracy boost on this new dataset and provides

promising path for future deployment in real grocery store and supermarkets.

TrainSet # TestSet # Total Accuracy
GroCN20 10,554 2,638 13,192 99.30%
FruMB26 16,424 4,106 20,530 97.05%
VegMB46 24,586 6,146 30,732 96.30%

VegFruMB72 41,010 10,252 51,262 96.52%

Table 6.6: Evaluation on customized grocery dataset using proposed approach.

6.5 Conclusion

We designed and implemented an edge computing visual system to classify

vegetables and fruits on the domain-specific VegFru dataset. Our work is the first

research attempt using CNN in mobile devices for a large vegetable dataset. Based

on the experiment result, our system has shown outstanding performance in image

categorization with limited memory consumption in a short time frame. The next step

is to collaborate with engineering researchers to deploy such a system in retail stores

and measure its performance in realistic scenarios. We will also use more labeled

region-based information for accurate localization to further improve accuracy and

handle extreme cases in real-world settings. Our system has provided a promising

path for automatic item categorization in self-service supermarkets.

www.manaraa.com

95

Chapter 7

CONCLUSION

In this thesis, we present the deep-learning based image recognition system on

an edge computing service infrastructure. We study how to combine deep learning

algorithm and edge computing devices for accurate image recognition under the strict

constraint of latency, accuracy and battery consumption. Our proposed approach and

system show outstanding performance in various system metrics in different applica-

tion scenarios, especially in the healthcare domain for dietary assessment, medical

image analysis and tuberculosis diagnosis. We propose different deployment schemes

for these applications.

We first research on how to conduct dietary assessment on edge devices, where

the deep learning model and image analysis algorithms are deployed on a cloud server

and mobile devices separately. To do this, we first investigate on the blurry detection

and image segmentation using traditional feature based algorithms. After filtering the

blurry image and get the segmented patches from original clear image, we send them

into the cloud server. These pipelines are implemented on Android using Java and

OpenCV. In the cloud server, we train our image classification model and fine-tune

it from pretrained model on ImageNet dataset. We design our convolutional neural

network and implement the AlexNet and GoogLeNet model using Caffe. Our model

www.manaraa.com

96

is deployed on the server with a web server implemented by Django and Python,

thus listening to a HTTP port for receiving the image classification request. After

receiving the image, we run the model inference and predict the label for the input

image. The final result is sent back to the edge device and displayed on the screen.

The system’s response time, power consumption and system accuracy are evaluated

during this whole process.

Next, we explore how deep learning and mobile techniques can be leveraged

to improve the tuberculosis diagnosis in resource poor and marginalized area. We

propose to use deep learning algorithms to improve the diagnosis accuracy and deploy

the system on mobile devices to speed up the diagnosis and reduce the patients’ wait

time. To implement such ideas, we develop a set of algorithms and system to assist

data collection and model training. First, we collaborate with a team formed by

computer scientist, physicians and doctors to collect chest X-ray images from the

hospital. Then we build an annotation software that can help us collect the label and

bounding box information to further facilitate the training of various deep learning

models. At last, we preprocess all the chest X-ray image from the dataset and train

several deep learning based models. Such models are deployed on the mobile devices

and cloud server to help field study in Perú. Our evaluation and discussion with the

clinical experts have show that the proposed method using deep learning and mobile

techniques could help the tuberculosis diagnosis and speed up the whole process.

We also investigate how the combination of deep learning and edge comput-

ing could leverage the automatic checkout process in retail industry, especially in the

supermarkets and grocery stores. Specifically, we research how to deploy an edge com-

puting system in grocery store to eliminate the wait time and facilitate the checkout

process. First, we collect vegetable and fruit images from online dataset and actual

grocery environment in the US and China. Then, we design and build convolutional

neural network, specifically for mobile and embedded devices. Our CNN model adopts

www.manaraa.com

97

the architecture of MobileNet and shows outstanding performance in CPU, memory

and storage utilization without sacrificing too much accuracy and processing time.

We train our deep learning model and quantize the model for mobile devices run-

ning on Android system. The system performance are evaluated in various metrics

to study the application potential in different environmental settings. Additionally,

we collaborate with Chinese supermarkets and collect another dataset for most com-

monly vegetable and fruits there. We also visit many US supermarkets and collect

their vegetable and fruit categories to select enough image data from a commonly used

large-scale dataset named VegFru. Our system and model show significant improve-

ment over other hand-engineered feature based machine learning classifiers and CNN

models on these datasets within limited computation and computational resources.

www.manaraa.com

98

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] A. Khotanzad and Y. H. Hong, “Invariant image recognition by zernike mo-
ments,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 12, no. 5, pp. 489–497, 1990.

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in international Conference on computer vision & Pattern Recognition
(CVPR’05), vol. 1. IEEE Computer Society, 2005, pp. 886–893.

[4] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
in European conference on computer vision. Springer, 2006, pp. 404–417.

[6] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture
measures with classification based on featured distributions,” Pattern recogni-
tion, vol. 29, no. 1, pp. 51–59, 1996.

[7] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant
scalable keypoints,” in 2011 IEEE international conference on computer vision
(ICCV). Ieee, 2011, pp. 2548–2555.

[8] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo
from maximally stable extremal regions,” Image and vision computing, vol. 22,
no. 10, pp. 761–767, 2004.

[9] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,” in
2012 IEEE Conference on Computer Vision and Pattern Recognition. Ieee,
2012, pp. 510–517.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

www.manaraa.com

99

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[12] C. Szegedy, W. Liu, Y. Jia, Sermanet et al., “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015, pp. 1–9.

[13] L. Wang and D.-C. He, “Texture classification using texture spectrum,” Pattern
Recognition, vol. 23, no. 8, pp. 905–910, 1990.

[14] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971–987,
2002.

[15] I. Daubechies, Ten lectures on wavelets. SIAM, 1992.

[16] F. Schaffalitzky and A. Zisserman, “Viewpoint invariant texture matching and
wide baseline stereo,” in Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001, vol. 2. IEEE, 2001, pp. 636–643.

[17] U. Avni, H. Greenspan, E. Konen, M. Sharon, and J. Goldberger, “X-ray cat-
egorization and retrieval on the organ and pathology level, using patch-based
visual words,” IEEE Transactions on Medical Imaging, vol. 30, no. 3, pp. 733–
746, 2011.

[18] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and Y. Ma, “Deepfood: Deep
learning-based food image recognition for computer-aided dietary assessment,”
in International Conference on Smart Homes and Health Telematics. Springer,
2016, pp. 37–48.

[19] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising auto-
encoders as generative models,” in Advances in neural information processing
systems, 2013, pp. 899–907.

[20] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Artificial
intelligence and statistics, 2009, pp. 448–455.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818–
833.

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on ma-
chine learning (ICML-10), 2010, pp. 807–814.

www.manaraa.com

100

[24] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile sens-
ing?” in Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications. ACM, 2015, pp. 117–122.

[25] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking,
vol. 24, no. 5, pp. 2795–2808, 2015.

[26] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen, and
P. Hou, “A new deep learning-based food recognition system for dietary as-
sessment on an edge computing service infrastructure,” IEEE Transactions on
Services Computing, vol. 11, no. 2, pp. 249–261, 2018.

[27] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang,
“Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,”
in ACM SIGARCH Computer Architecture News, vol. 45, no. 1. ACM, 2017,
pp. 615–629.

[28] K. Yanai, R. Tanno, and K. Okamoto, “Efficient mobile implementation of a
cnn-based object recognition system,” in Proceedings of the 24th ACM interna-
tional conference on Multimedia. ACM, 2016, pp. 362–366.

[29] A. Meyers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, N. Silberman,
S. Guadarrama, G. Papandreou, J. Huang, and K. P. Murphy, “Im2calories:
towards an automated mobile vision food diary,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1233–1241.

[30] S. S. Latifi Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi, “Cnndroid:
Gpu-accelerated execution of trained deep convolutional neural networks on
android,” in Proceedings of the 2016 ACM on Multimedia Conference. ACM,
2016, pp. 1201–1205.

[31] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[32] K. Briechle and U. D. Hanebeck, “Template matching using fast normalized
cross correlation,” in Optical Pattern Recognition XII, vol. 4387. International
Society for Optics and Photonics, 2001, pp. 95–102.

[33] P. E. Lestrel, Fourier descriptors and their applications in biology. Cambridge
University Press, 1997.

[34] T. Tan, “Rotation invariant texture features and their use in automatic script
identification,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 20, no. 7, pp. 751–756, 1998.

[35] O. D. Faugeras and M. Hebert, “The representation, recognition, and locating
of 3-d objects,” The international journal of robotics research, vol. 5, no. 3, pp.
27–52, 1986.

www.manaraa.com

101

[36] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[39] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,
“Cloudlets: at the leading edge of mobile-cloud convergence,” in 6th Inter-
national Conference on Mobile Computing, Applications and Services. IEEE,
2014, pp. 1–9.

[40] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,
no. 5, pp. 78–81, 2016.

[41] V. Stantchev, A. Barnawi, S. Ghulam, J. Schubert, and G. Tamm, “Smart
items, fog and cloud computing as enablers of servitization in healthcare,” Sen-
sors & Transducers, vol. 185, no. 2, p. 121, 2015.

[42] Y. Cao, C. Liu, B. Liu, M. J. Brunette, N. Zhang, T. Sun, P. Zhang,
J. Peinado, E. S. Garavito, L. L. Garcia et al., “Improving tuberculosis di-
agnostics using deep learning and mobile health technologies among resource-
poor and marginalized communities,” in 2016 IEEE First International Confer-
ence on Connected Health: Applications, Systems and Engineering Technologies
(CHASE). IEEE, 2016, pp. 274–281.

[43] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for vm-
based cloudlets in mobile computing,” IEEE pervasive Computing, 2009.

[44] Y. Cao, S. Chen, P. Hou, and D. Brown, “Fast: A fog computing assisted dis-
tributed analytics system to monitor fall for stroke mitigation,” in 2015 IEEE
International Conference on Networking, Architecture and Storage (NAS).
IEEE, 2015, pp. 2–11.

[45] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu et al., “Convolutional neural networks
for medical image analysis: Full training or fine tuning?” IEEE transactions
on medical imaging, vol. 35, no. 5, pp. 1299–1312, 2016.

[46] P. Maduskar, L. Hogeweg, R. Philipsen et al., “Improved texture analysis for
automatic detection of tuberculosis (tb) on chest radiographs with bone sup-
pression images,” in SPIE Medical Imaging. International Society for Optics
and Photonics, 2013.

www.manaraa.com

102

[47] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[48] C. L. Ogden, M. D. Carroll, B. K. Kit, and K. M. Flegal, “Prevalence of child-
hood and adult obesity in the united states, 2011-2012,” Jama, vol. 311, no. 8,
pp. 806–814, 2014.

[49] W. H. Organization, W. H. Organization et al., “Obesity and overweight fact
sheet. 2016,” URL: http://www. thehealthwell. info/node/82914, 2017.

[50] G. H. Beaton, J. Milner, P. Corey, V. McGuire, M. Cousins, E. Stewart,
M. De Ramos, D. Hewitt, P. Grambsch, N. Kassim et al., “Sources of vari-
ance in 24-hour dietary recall data: implications for nutrition study design and
interpretation,” The American journal of clinical nutrition, vol. 32, no. 12, pp.
2546–2559, 1979.

[51] J. Cade, R. Thompson, V. Burley, and D. Warm, “Development, validation and
utilisation of food-frequency questionnaires–a review,” Public health nutrition,
vol. 5, no. 4, pp. 567–587, 2002.

[52] R. Steele, “An overview of the state of the art of automated capture of di-
etary intake information,” Critical reviews in food science and nutrition, vol. 55,
no. 13, pp. 1929–1938, 2015.

[53] Y. Matsuda and K. Yanai, “Multiple-food recognition considering co-occurrence
employing manifold ranking,” in Proceedings of the 21st International Confer-
ence on Pattern Recognition (ICPR2012). IEEE, 2012, pp. 2017–2020.

[54] S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar, “Food recognition using
statistics of pairwise local features,” in 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. IEEE, 2010, pp. 2249–2256.

[55] F. Zhu, M. Bosch, I. Woo, S. Kim, C. J. Boushey, D. S. Ebert, and E. J. Delp,
“The use of mobile devices in aiding dietary assessment and evaluation,” IEEE
journal of selected topics in signal processing, vol. 4, no. 4, pp. 756–766, 2010.

[56] C. K. Martin, T. Nicklas, B. Gunturk, J. B. Correa, H. R. Allen, and C. Cham-
pagne, “Measuring food intake with digital photography,” Journal of Human
Nutrition and Dietetics, vol. 27, pp. 72–81, 2014.

[57] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.

[58] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[59] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,”
in 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb). IEEE, 2015, pp. 73–78.

www.manaraa.com

103

[60] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and
issues,” in Proceedings of the 2015 workshop on mobile big data. ACM, 2015,
pp. 37–42.

[61] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen, and
P. Hou, “A new deep learning-based food recognition system for dietary as-
sessment on an edge computing service infrastructure,” IEEE Transactions on
Services Computing, vol. 11, no. 2, pp. 249–261, 2017.

[62] R. R. Wing and S. Phelan, “Long-term weight loss maintenance–,” The Amer-
ican journal of clinical nutrition, vol. 82, no. 1, pp. 222S–225S, 2005.

[63] B. L. Daugherty, T. E. Schap, R. Ettienne-Gittens, F. M. Zhu, M. Bosch, E. J.
Delp, D. S. Ebert, D. A. Kerr, and C. J. Boushey, “Novel technologies for
assessing dietary intake: evaluating the usability of a mobile telephone food
record among adults and adolescents,” Journal of medical Internet research,
vol. 14, no. 2, 2012.

[64] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” The Journal of physiology,
vol. 160, no. 1, pp. 106–154, 1962.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recogni-
tion. IEEE, 2009, pp. 248–255.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[67] Y. Jia, E. Shelhamer, J. Donahue et al., “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[68] J. Oh, S. Hwang, Y. Cao, W. Tavanapong, D. Liu, J. Wong, and P. C. De Groen,
“Measuring objective quality of colonoscopy,” IEEE Transactions on Biomedi-
cal Engineering, vol. 56, no. 9, pp. 2190–2196, 2009.

[69] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[70] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 5353–5360.

[71] Y. Kawano and K. Yanai, “Foodcam: A real-time food recognition system on
a smartphone,” Multimedia Tools and Applications, vol. 74, no. 14, pp. 5263–
5287, 2015.

www.manaraa.com

104

[72] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discrimina-
tive components with random forests,” in European Conference on Computer
Vision. Springer, 2014, pp. 446–461.

[73] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European
conference on computer vision. Springer, 2014, pp. 740–755.

[74] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4820–4828.

[75] W. H. Organization et al., “Global tuberculosis report 2016,” World Health
Organization, 2016.

[76] B. Caputo, T. Tommasi, H. Muller, T. M. Deserno, and J. Kalpathy-Cramer,
“Imageclef 2009 lung nodule detection and medical annotation task,” in
Workshop of the Cross-Language Evaluation Forum for European Languages.
Springer, 2009, pp. 72–84.

[77] J. Shiraishi, S. Katsuragawa, J. Ikezoe, T. Matsumoto, T. Kobayashi et al., “De-
velopment of a digital image database for chest radiographs with and without a
lung nodule: receiver operating characteristic analysis of radiologists’ detection
of pulmonary nodules,” American Journal of Roentgenology, vol. 174, no. 1, pp.
71–74, 2000.

[78] S. Jaeger, A. Karargyris, S. Antani, and G. Thoma, “Detecting tuberculosis
in radiographs using combined lung masks,” in Engineering in Medicine and
Biology Society. IEEE, 2012.

[79] T. Xu, I. Cheng, R. Long, and M. Mandal, “Novel coarse-to-fine dual scale
technique for tuberculosis cavity detection in chest radiographs,” EURASIP
Journal on Image and Video Processing, vol. 2013, no. 1, p. 3, 2013.

[80] Y.-L. Song and Y. Yang, “Localization algorithm and implementation for fo-
cal of pulmonary tuberculosis chest image,” in Machine Vision and Human-
Machine Interface. IEEE, 2010.

[81] S. Jaeger, A. Karargyris, S. Candemir, J. Siegelman, L. Folio, S. Antani,
G. Thoma, and C. J. McDonald, “Automatic screening for tuberculosis in chest
radiographs: a survey,” Quantitative imaging in medicine and surgery, vol. 3,
no. 2, pp. 89–99, 2013.

[82] E. Ruiz, Á. Proaño, O. Ponce, and W. Curioso, “Mobile health for public
health in peru: lessons learned,” Revista peruana de medicina experimental y
salud publica, vol. 32, no. 2, pp. 364–372, 2015.

www.manaraa.com

105

[83] V. Mani, S. Wang, F. Inci, G. De Libero, A. Singhal, and U. Demirci, “Emerging
technologies for monitoring drug-resistant tuberculosis at the point-of-care,”
Advanced drug delivery reviews, vol. 78, pp. 105–117, 2014.

[84] M. Zimic, J. Coronel, R. H. Gilman, C. G. Luna, W. H. Curioso, and D. A.
Moore, “Can the power of mobile phones be used to improve tuberculosis di-
agnosis in developing countries?” Transactions of the Royal Society of Tropical
Medicine and Hygiene, vol. 103, no. 6, pp. 638–640, 2009.

[85] A. B. Schwartz, G. Siddiqui, J. S. Barbieri, A. L. Akhtar, W. Kim, R. Littman-
Quinn, E. F. Conant, N. K. Gupta, B. A. Pukenas, P. Ramchandani et al., “The
accuracy of mobile teleradiology in the evaluation of chest x-rays,” Journal of
telemedicine and telecare, vol. 20, no. 8, pp. 460–463, 2014.

[86] M. Breuninger, B. van Ginneken, R. H. Philipsen, F. Mhimbira, J. J. Hella,
F. Lwilla, J. van den Hombergh, A. Ross, L. Jugheli, D. Wagner et al., “Diag-
nostic accuracy of computer-aided detection of pulmonary tuberculosis in chest
radiographs: a validation study from sub-saharan africa,” PloS one, vol. 9,
no. 9, p. e106381, 2014.

[87] M. Muyoyeta, P. Maduskar, M. Moyo, N. Kasese, D. Milimo, R. Spooner, N. Ka-
pata, L. Hogeweg, B. van Ginneken, and H. Ayles, “The sensitivity and speci-
ficity of using a computer aided diagnosis program for automatically scoring
chest x-rays of presumptive tb patients compared with xpert mtb/rif in lusaka
zambia,” PloS one, vol. 9, no. 4, p. e93757, 2014.

[88] S. Jaeger, A. Karargyris, S. Candemir, L. Folio, J. Siegelman, F. Callaghan,
Z. Xue, K. Palaniappan, R. K. Singh, S. Antani et al., “Automatic tuberculo-
sis screening using chest radiographs,” IEEE transactions on medical imaging,
vol. 33, no. 2, pp. 233–245, 2014.

[89] H. Müller and P. Clough, “Imageclef 2004–2005: results, experiences and new
ideas for image retrieval evaluation,” 2005.

[90] H. Müller, T. Deselaers, T. Deserno, P. Clough, E. Kim, and W. Hersh,
“Overview of the imageclefmed 2006 medical retrieval and medical annotation
tasks,” in Workshop of the Cross-Language Evaluation Forum for European
Languages. Springer, 2006, pp. 595–608.

[91] H. Müller, T. Deselaers, T. M. Deserno, J. Kalpathy-Cramer, E. Kim, and
W. Hersh, “Overview of the imageclefmed 2007 medical retrieval and medical
annotation tasks,” in Workshop of the Cross-Language Evaluation Forum for
European Languages. Springer, 2007, pp. 472–491.

[92] H. Müller, J. Kalpathy-Cramer, I. Eggel, S. Bedrick, S. Radhouani, B. Bakke,
C. E. Kahn, and W. Hersh, “Overview of the clef 2009 medical image retrieval
track,” in Workshop of the Cross-Language Evaluation Forum for European
Languages. Springer, 2009, pp. 72–84.

www.manaraa.com

106

[93] H. Müller, J. Kalpathy-Cramer, C. E. Kahn, W. Hatt, S. Bedrick, andW. Hersh,
“Overview of the imageclefmed 2008 medical image retrieval task,” inWorkshop
of the Cross-Language Evaluation Forum for European Languages. Springer,
2008, pp. 512–522.

[94] H. Müller, A. G. S. de Herrera, J. Kalpathy-Cramer, D. Demner-Fushman, S. K.
Antani, and I. Eggel, “Overview of the imageclef 2012 medical image retrieval
and classification tasks.” in CLEF (online working notes/labs/workshop), 2012,
pp. 1–16.

[95] B. Hu, S. Dasmahapatra, P. Lewis, and N. Shadbolt, “Ontology-based medical
image annotation with description logics,” in Proceedings. 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence. IEEE, 2003, pp. 77–82.

[96] D. L. Rubin, P. Mongkolwat, V. Kleper, K. Supekar, and D. S. Channin, “Med-
ical imaging on the semantic web: Annotation and image markup.” in AAAI
Spring Symposium: semantic scientific knowledge integration, 2008, pp. 93–98.

[97] C. Liu, Y. Cao, M. Alcantara, B. Liu, M. Brunette, J. Peinado, and W. Curioso,
“Tx-cnn: Detecting tuberculosis in chest x-ray images using convolutional neu-
ral network,” in Image Processing (ICIP), 2017 IEEE International Conference
on. IEEE, 2017, pp. 2314–2318.

[98] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme: a
database and web-based tool for image annotation,” International journal of
computer vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[99] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and trends®
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[100] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[101] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mito-
sis detection in breast cancer histology images with deep neural networks,” in
International Conference on Medical Image Computing and Computer-assisted
Intervention. Springer, 2013, pp. 411–418.

[102] H.-C. Shin, H. R. Roth, M. Gao, L. Lu et al., “Deep convolutional neural net-
works for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35, no. 5,
pp. 1285–1298, 2016.

[103] M. F. Alcantara, Y. Cao, C. Liu, B. Liu et al., “Improving tuberculosis diag-
nostics using deep learning and mobile health technologies among resource-poor
communities in perú,” Smart Health, vol. 1, pp. 66 – 76, 2017.

www.manaraa.com

107

[104] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International journal of computer vision, vol.
104, no. 2, pp. 154–171, 2013.

[105] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[106] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using random
forests and ferns,” in 2007 IEEE 11th international conference on computer
vision. Ieee, 2007, pp. 1–8.

[107] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1440–1448.

[108] L. Shen, Z. Lin, and Q. Huang, “Relay backpropagation for effective learning of
deep convolutional neural networks,” arXiv preprint arXiv:1512.05830, 2015.

[109] M. L. Meuter, A. L. Ostrom, R. I. Roundtree, and M. J. Bitner, “Self-service
technologies: understanding customer satisfaction with technology-based ser-
vice encounters,” Journal of marketing, vol. 64, no. 3, pp. 50–64, 2000.

[110] S. Bulmer, J. Elms, and S. Moore, “Exploring the adoption of self-service check-
outs and the associated social obligations of shopping practices,” Journal of
Retailing and Consumer Services, vol. 42, pp. 107–116, 2018.

[111] D. Grewal, A. L. Roggeveen, and J. Nordfält, “The future of retailing,” Journal
of Retailing, vol. 93, no. 1, pp. 1–6, 2017.

[112] N. Wingfield, “Amazon moves to cut checkout line, promoting a grab-and-go
experience,” The New York Times, 2016.

[113] I. Krasin, T. Duerig, N. Alldrin, A. Veit, S. Abu-El-Haija, S. Belongie, D. Cai,
Z. Feng, V. Ferrari, V. Gomes et al., “Openimages: A public dataset for large-
scale multi-label and multi-class image classification,” Dataset available from
https://github. com/openimages, vol. 2, no. 6, p. 7, 2016.

[114] S. Hou, Y. Feng, and Z. Wang, “Vegfru: A domain-specific dataset for fine-
grained visual categorization,” in Computer Vision (ICCV), 2017 IEEE Inter-
national Conference on. IEEE, 2017, pp. 541–549.

[115] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, 2018, pp. 4510–4520.

[116] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-
caching for recognition applications,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 276–286.

www.manaraa.com

108

[117] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[118] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848–6856.

[119] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 4700–4708.

[120] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[121] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[122] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[123] C. Liu, X. Wang, J. Ni, Y. Cao, and B. Liu, “An edge computing visual system
for vegetable categorization,” arXiv preprint, 2019.

[124] S. R. Dubey and A. S. Jalal, “Fruit and vegetable recognition by fusing colour
and texture features of the image using machine learning,” International Jour-
nal of Applied Pattern Recognition, vol. 2, no. 2, pp. 160–181, 2015.

[125] K. Hameed, D. Chai, and A. Rassau, “A comprehensive review of fruit and
vegetable classification techniques,” Image and Vision Computing, vol. 80, pp.
24–44, 2018.

[126] Y. Sakai, T. Oda, M. Ikeda, and L. Barolli, “A vegetable category recognition
system using deep neural network,” in Innovative Mobile and Internet Ser-
vices in Ubiquitous Computing (IMIS), 2016 10th International Conference on.
IEEE, 2016, pp. 189–192.

[127] H. Mureşan and M. Oltean, “Fruit recognition from images using deep learning,”
Acta Universitatis Sapientiae, Informatica, vol. 10, no. 1, pp. 26–42, 2018.

[128] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A
fruit detection system using deep neural networks,” Sensors, vol. 16, no. 8, p.
1222, 2016.

www.manaraa.com

109

[129] Y. Kawano and K. Yanai, “Automatic expansion of a food image dataset lever-
aging existing categories with domain adaptation,” in Proc. of ECCV Workshop
on Transferring and Adapting Source Knowledge in Computer Vision (TASK-
CV), 2014.

[130] H. M. Zawbaa, M. Abbass, M. Hazman, and A. E. Hassenian, “Automatic
fruit image recognition system based on shape and color features,” in Inter-
national Conference on Advanced Machine Learning Technologies and Applica-
tions. Springer, 2014, pp. 278–290.

[131] W. Rawat and Z. Wang, “Deep convolutional neural networks for image clas-
sification: A comprehensive review,” Neural computation, vol. 29, no. 9, pp.
2352–2449, 2017.

[132] C. S. A. H. S. B. Yin Cui, Yang Song, “Large scale fine-grained categorization
and domain-specific transfer learning,” in CVPR, 2018.

[133] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine
learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[134] M. F. Alcantara, Y. Cao, C. Liu, B. Liu, M. Brunette, N. Zhang, T. Sun,
P. Zhang, Q. Chen, Y. Li et al., “Improving tuberculosis diagnostics using deep
learning and mobile health technologies among resource-poor communities in
perú,” Smart Health, vol. 1, pp. 66–76, 2017.

www.manaraa.com

BIOGRAPHICAL SKETCH

Chang Liu received his bachelor’s degree in Computer Science and Technology
from Huazhong University of Science and Technology in China, and master’s degree in
Computer Science from University of Massachusetts Lowell, USA. His research inter-
ests lie in machine learning, computer vision, edge computing and medical imaging.
His publications include [18, 42, 61, 97, 134]

xvii

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

